This lab intends to walk you through basic aspects of the R language and programming environment.

Readers who really want to learn R should spend time on

Don’t go without Base R cheatsheet

Packages

Base R can do a lot. But the full power of R comes from a fast growing collection of packages.

Packages are first installed (that is downloaded from cran and copied somewhere on the hard drive), and if needed, loaded during a session.

  • Installation can usually be performed using command install.packages(). In some circumstances, ad hoc installation commands (often from packages devtools) are needed
  • Once a package has been installed/downloaded on your drive
    • if you want all objects exported by the package to be available in your session, you should load the package, using library() or require() (what’s the difference?). Technically, this loads the NameSpace defined by the package.
    • if you just want to pick some objects exported from the package, you can use qualified names like package_name::object_name to access the object (function, dataset, …).

For example. when we write

gapminder <- gapminder::gapminder

we assign dataframe gapminder from package gapminder to identifier "gapminder" in global environment .

Function p_load() from pacman (package manager) blends installation and loading: if the package named in the argument of p_load() is not installed (not among the installed.packages()), p_load() attempts to install the package. If installation is successful, the package is loaded.

to_be_loaded <- c("devtools",
                  "tidyverse", 
                  "lobstr",
                  "ggforce",
                  "nycflights13",
                  "patchwork", 
                  "glue",
                  "DT", 
                  "kableExtra",
                  "viridis")

for (pck in to_be_loaded) {
  if (!require(pck, character.only = T)) {
    install.packages(pck, repos="http://cran.rstudio.com/")
    stopifnot(require(pck, character.only = T))
  }  
}

A very nice feature of R is that functions from base R as well as from packages have optional arguments with sensible default values. Look for example at documentation of require() using expression ?require.

Optional settings may concern individual functions or the collection of functions exported by some packages. In the next chunk, we reset the default color scales used by graphical functions from ggplot2.

opts <- options()  # save old options

options(ggplot2.discrete.colour="viridis")
options(ggplot2.continuous.colour="viridis")

Numerical (atomic) vectors

Numerical (atomic) vectors form the most primitive type of R.

Vector creation and assignment

The next three lines create three numerical atomic vectors.

In IDE Rstudio, have a look at the environment pane on the right before running the chunk, and after.

Use ls() to investigate the environment before and after the execution of the three assignments.

ls()
## [1] "has_annotations" "opts"            "params"          "pck"            
## [5] "to_be_loaded"
x <- c(1, 2, 12)
y <- 5:7
z <- 10:1
x ; y ; z 
## [1]  1  2 12
## [1] 5 6 7
##  [1] 10  9  8  7  6  5  4  3  2  1
ls()
## [1] "has_annotations" "opts"            "params"          "pck"            
## [5] "to_be_loaded"    "x"               "y"               "z"

What does the next chunk?

ls()
## [1] "has_annotations" "opts"            "params"          "pck"            
## [5] "to_be_loaded"    "x"               "y"               "z"
w <- y
ls()
## [1] "has_annotations" "opts"            "params"          "pck"            
## [5] "to_be_loaded"    "w"               "x"               "y"              
## [9] "z"
  • Is the content of object denoted by y copied to a new object bound to w?
  • Interpret the result of w == y.
  • Interpret the result of identical(w,y) (use help("identical") if needed).
w == y 
## [1] TRUE TRUE TRUE
identical(w,y)
## [1] TRUE

Indexation, slicing, modification

Slicing a vector can be done in two ways:

  • providing a vector of indices to be selected. Indices need not be consecutive
  • providing a Boolean mask, that is a logical vector to select a set of positions
x <- c(1, 2, 12) ; y <- 5:7 ; z <- 10:1
  • Explain the next lines
z[1]   # slice of length 1
## [1] 10
z[0]   # What did you expect?
## integer(0)
z[x]   # slice of length ??? index error ?
## [1] 10  9 NA
z[y]
## [1] 6 5 4
z[x %% 2]   # what happens with x[0] ?
## [1] 10
z[0 == (x %% 2)] # masking
## [1] 9 8 6 5 3 2
z[c(2, 1, 1)]
## [1]  9 10 10
  • If the length of mask and and the length of the sliced vector do not coincide, what happens?

A scalar is just a vector of length \(1\)!

class(z)
## [1] "integer"
class(z[1])
## [1] "integer"
class(z[c(2,1)])
## [1] "integer"
  • Explain the next lines
y[2:3] <- z[2:3]
y == z[-10]
[1] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
z[-11]
 [1] 10  9  8  7  6  5  4  3  2  1
  • Explain the next line
z[-(1:5)]
## [1] 5 4 3 2 1
  • How would you select the last element from a vector (say z)?
  • Reverse the entries of a vector. Find two ways to do that.

In statistics, machine learning, we are often faced with the task of building grid of regularly spaced elements (these elements can be numeric or not). R offers a collection of tools to perform this. The most basic tool is rep().

  • Repeat a vector \(2\) times
  • Repeat each element of a vector twice

Let us remove objects from the global environment.

rm(w, x, y ,z)

Numbers

So far, we told about numeric vectors. Numeric vectors are vectors of floating point numbers. R distinguishes several kinds of numbers.

  • Integers
  • Floating point numbers (double)

To check whether a vector is made of numeric or of integer, use is.numeric() or is.integer(). Use as.integer, as.numeric() to enforce type conversion.

Explain the outcome of the next chunk

class(113L) ; class(113) ; class(113L + 113) ; class(2 * 113L) ; class(pi) ; as.integer(pi)
## [1] "integer"
## [1] "numeric"
## [1] "numeric"
## [1] "numeric"
## [1] "numeric"
## [1] 3
class(as.integer(113))
## [1] "integer"
pi ; class(pi)
## [1] 3.141593
## [1] "numeric"
floor(pi) ; class(floor(pi)) # mind the floor
## [1] 3
## [1] "numeric"

Integer arithmetic

29L * 31L ; 899L %/% 32L ; 899L %% 30L
## [1] 899
## [1] 28
## [1] 29

R integers are not the natural numbers from Mathematics

R numerics are not the real numbers from Mathematics

.Machine$double.eps
## [1] 2.220446e-16
.Machine$double.xmax
## [1] 1.797693e+308
.Machine$sizeof.longlong
## [1] 8

u <- double(19L)
v <- numeric(5L)
w <- integer(7L)
lapply(list(u, v, w), typeof)
## [[1]]
## [1] "double"
## 
## [[2]]
## [1] "double"
## 
## [[3]]
## [1] "integer"
length(c(u, v, w))
## [1] 31
typeof(c(u, v, w))
## [1] "double"

R is (sometimes) able to make sensible use of Infinite.

log(0)
## [1] -Inf
log(Inf)
## [1] Inf
1/0
## [1] Inf
0/0
## [1] NaN
max(c( 0/0,1,10))
## [1] NaN
max(c(NA,1,10))
## [1] NA
max(c(-Inf,1,10))
## [1] 10
is.finite(c(-Inf,1,10))
## [1] FALSE  TRUE  TRUE
is.na(c(NA,1,10))
## [1]  TRUE FALSE FALSE
is.nan(c(NaN,1,10))
## [1]  TRUE FALSE FALSE

Computing with vectors

Summing, scalar multiplication

x <- 1:3
y <- 9:7

sum(x) ; prod(x)
## [1] 6
## [1] 6

z <- cumsum(1:3)
w <- cumprod(3:5)

x + y
## [1] 10 10 10
x + z
## [1] 2 5 9
2 * w
## [1]   6  24 120
2 + w
## [1]  5 14 62
w / 2
## [1]  1.5  6.0 30.0
  • How would you compute a factorial?
  • Approximate \(\sum_{n=1}^\infty 1/n^2\) within \(10^{-3}\)?
  • How would you compute the inner product between two (atomic numeric) vectors?

What we have called vectors so far are indeed atomic vectors.

Numerical matrices

R offers a matrix class.

A <- matrix(1:50, nrow=5)
A 
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]    1    6   11   16   21   26   31   36   41    46
## [2,]    2    7   12   17   22   27   32   37   42    47
## [3,]    3    8   13   18   23   28   33   38   43    48
## [4,]    4    9   14   19   24   29   34   39   44    49
## [5,]    5   10   15   20   25   30   35   40   45    50
class(A)
## [1] "matrix" "array"
  • From the evaluation of the preceding chunk, can you guess whether it is easier the traverse a matrix in row first order or in column first order?

Creation, transposition and reshaping

A vector can be turned into a column matrix.

v <- as.matrix(1:5)
v
##      [,1]
## [1,]    1
## [2,]    2
## [3,]    3
## [4,]    4
## [5,]    5
t(v)  # transpose 
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    1    2    3    4    5
cat(dim(v), ' ', dim(t(v)), '\n')
## 5 1   1 5
A <- matrix(1, nrow=5, ncol=2) ; A
##      [,1] [,2]
## [1,]    1    1
## [2,]    1    1
## [3,]    1    1
## [4,]    1    1
## [5,]    1    1
  • Is there a difference between the next two assignments?
  • How would you assign value to all entries of a matrix?
A[] <- 0 ; A
##      [,1] [,2]
## [1,]    0    0
## [2,]    0    0
## [3,]    0    0
## [4,]    0    0
## [5,]    0    0
A   <- 0 ; A
## [1] 0
A <- matrix(1, nrow=5, ncol=2) ; A
##      [,1] [,2]
## [1,]    1    1
## [2,]    1    1
## [3,]    1    1
## [4,]    1    1
## [5,]    1    1
A[] <- 1:15 ; A
##      [,1] [,2]
## [1,]    1    6
## [2,]    2    7
## [3,]    3    8
## [4,]    4    9
## [5,]    5   10
diag(1, 3)  # building identity matrix
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1

matrix(0, 3, 3) # building null matrix
##      [,1] [,2] [,3]
## [1,]    0    0    0
## [2,]    0    0    0
## [3,]    0    0    0

Is there any difference between the next two assignments?

B <- A[]
B ; A
##      [,1] [,2]
## [1,]    1    6
## [2,]    2    7
## [3,]    3    8
## [4,]    4    9
## [5,]    5   10
##      [,1] [,2]
## [1,]    1    6
## [2,]    2    7
## [3,]    3    8
## [4,]    4    9
## [5,]    5   10
lobstr::obj_addr(B) ; lobstr::obj_addr(A)
## [1] "0x557a2bf34998"
## [1] "0x557a275d96f8"
B <- A

Indexation, slicing, modification

Indexation consists in getting one item from a vector/list/matrix/array/dataframe.

Slicing and subsetting consists in picking a substructure:

  • subsetting a vector returns a vector

  • subsetting a list returns a list

  • subsetting a matrix/array returns a matrix/array (beware of implicit simplifications and dimension dropping)

  • subsetting a dataframe returns a dataframe or a vector (again, beware of implicit simplifications).

  • Explain the next results

A <- matrix(1, nrow=5, ncol=2)

dim(A[sample(5, 3), -1])
## NULL
dim(A[sample(5, 3), 1])
## NULL
length(A[sample(5, 3), 1])
## [1] 3
is.vector(A[sample(5, 3), 1])
## [1] TRUE
A[10:15]
## [1]  1 NA NA NA NA NA
A[60]
## [1] NA
dim(A[])
## [1] 5 2
  • How would you create a fresh copy of a matrix?

Computing with matrices

* versus %*%
%*% stands for matrix multiplication. In order to use it, the two matrices should have conformant dimensions.
t(v) %*% A
##      [,1] [,2]
## [1,]   15   15

There are a variety of reasonable products around. Some of them are available in R.

  • How would you compute the Hilbert-Schmidt inner product between two matrices?

\[\langle A, B\rangle_{\text{HS}} = \text{Trace} \big(A \times B^T\big)\]

  • How can you invert a square (invertible) matrix?

Logicals

  • R has constants TRUE and FALSE.

  • Numbers can be coerced to logicals.

  • Which numbers are truthies? falsies?

  • What is the value (if any) of ! pi & TRUE ?

  • What is the meaning of all( ) ?

  • What is the meaning of any( ) ?

  • Recall De Morgan’s laws. Check them with R.

  • Is | denoting an inclusive or an exclusive OR?

w <- c(TRUE, FALSE, FALSE)

sum(w)
## [1] 1
any(w)
## [1] TRUE
all(w)
## [1] FALSE

!w
## [1] FALSE  TRUE  TRUE

TRUE  & FALSE
## [1] FALSE
TRUE | FALSE
## [1] TRUE
TRUE | TRUE
## [1] TRUE

Handling three-valued logic

Read and understand the next expressions

TRUE &  (1> (0/0))
## [1] NA
(1> (0/0)) | TRUE
## [1] TRUE
(1> (0/0)) | FALSE
## [1] NA
TRUE || (1> (0/0))
## [1] TRUE
TRUE |  (1> (0/0))
## [1] TRUE
TRUE || stopifnot(4<3)
## [1] TRUE
# TRUE |  stopifnot(4<3)  # uncomment to see outcome
FALSE && stopifnot(4<3)
## [1] FALSE
# FALSE & stopifnot(4<3)
  • What is the difference between logical operators || and | ?

Remark: favor &, | over &&, ||.

all and any

Look at the definition of all and any.

How would you check that a square matrix is symmetric?

Lists

While an instance of an atomic vector contains objects of the same type/class, an instance of list may contain objects of widely different types.

  • Check the output of the next chunk
p <- c(2, 7, 8)
q <- c("A", "B", "C")
x <- list(p, q)
x[2]
## [[1]]
## [1] "A" "B" "C"
x
## [[1]]
## [1] 2 7 8
## 
## [[2]]
## [1] "A" "B" "C"
length(x)
## [1] 2
rlang::is_vector(x)
## [1] TRUE
rlang::is_atomic(x)
## [1] FALSE
y <- c(p, q)
y
## [1] "2" "7" "8" "A" "B" "C"
length(y)
## [1] 6
rlang::is_atomic(y)
## [1] TRUE
rlang::is_list(y)
## [1] FALSE
  • How would you build a list made of p, q, and x?
  • What is x[2] made of?
  • How does it compare with x[[2]]?

Read and understand the next expressions.

is_atomic(p);  is_atomic(p[2]) ; is_atomic(p[[2]])
## [1] TRUE
## [1] TRUE
## [1] TRUE

is_list(q); is_atomic(q)
## [1] FALSE
## [1] TRUE

is_list(x); is_atomic(x) ; class(x)
## [1] TRUE
## [1] FALSE
## [1] "list"

class(x[2]) ; class(x[[2]])
## [1] "list"
## [1] "character"
length(x[2]) ; length(x[[2]])
## [1] 1
## [1] 3

identical(q, x[[2]]) ; identical(q, x[2])
## [1] TRUE
## [1] FALSE

obj_addr(q) ; obj_addr(x[[2]]) ; obj_addr(x[2])
## [1] "0x557a2b250788"
## [1] "0x557a2b250788"
## [1] "0x557a2b320138"
ref(x)
## █ [1:0x557a29d4a108] <list> 
## ├─[2:0x557a2ad5aba8] <dbl> 
## └─[3:0x557a2b250788] <chr>
obj_addrs(x)
## [1] "0x557a2ad5aba8" "0x557a2b250788"
identical(x[2],x[[2]])
## [1] FALSE

Functions is_atomic(), is_list(), ..., obj_addr() are from packages rlang and lobstr. See https://rlang.r-lib.org and https://lobstr.r-lib.org

  • How would you replace "A" in x with "K"?

Lookup tables (aka dictionaries) using named vectors

A lookup table maps strings to values. It can be implemented using named vectors. If we want to map: "seine" to "75", "loire" to "42", "rhone" to "69", "savoie" to "73" we can proceed in the following way:

codes <- c(75L, 42L, 69L, 73L)
names(codes) <- c("seine", "loire", "rhone", "savoie")

codes["rhone"];  codes["aube"]
## rhone 
##    69
## <NA> 
##   NA
  • what is the class of codes ?
  • Capitalize the names used by codes

Package stringr offers a function str_to_title() that could be of interest.

Factors

Factors exist in Base R. They play a very important role. Qualitative/Categorical variables are implemented as Factors.

Meta-package tidyverse offers a package dedicated to factor engineering: forcats.

yraw <- c("g1","g1","g2","g2","g2","g3")
print(yraw)
## [1] "g1" "g1" "g2" "g2" "g2" "g3"
summary(yraw)
##    Length     Class      Mode 
##         6 character character
is.vector(yraw) ; is.atomic(yraw)
## [1] TRUE
## [1] TRUE

yraw takes few values. It makes sense to make it a factor. How does it change the behavior of generic function summary ?

fyraw <- as.factor(yraw)
levels(fyraw)
## [1] "g1" "g2" "g3"

summary(fyraw)
## g1 g2 g3 
##  2  3  1

Load the (celebrated) iris dataset, and inspect variable Species

data(iris)

species <- iris$Species

levels(species)
[1] "setosa"     "versicolor" "virginica" 
summary(species)
    setosa versicolor  virginica 
        50         50         50 

We may want to collapse virginica and versicolor into a single level called versinica

forcats offer a function fct_collapse.

Factors are used to represent categorical variables.

Load the whiteside data from package MASS.

Have a glimpse.

Assign column Insul to y

  • What is the class of y?
  • Is y a vector
  • Is y ordered? What does ordered mean here?
  • What are the levels of y ? How many levels has y?
  • Can you slice y ?
  • What are the binary representations of the different levels of y?

Summarize factor y

Factors nuts and bolts

When coercing a vector (integer, character, …) to a factor, use forcats::as_factor() rather than base R as.factor().

Useful function to make nice barplots when constructing barplots.

Recall that when you want to display counts for a univariate categorical sample, you use a barplot. It is often desirable to rank the levels according to the displayed statistics (usually a count).

This can be done in a seamless way using functions like forcats::fct_infreq().

forcats::fct_count(y, prop = TRUE)
# A tibble: 2 × 3
  f          n     p
  <fct>  <int> <dbl>
1 Before    26 0.464
2 After     30 0.536
z <- sample(y, length(y), replace = TRUE)  # permutation of whiteside$Insul

sort(forcats::fct_infreq(z))       # first level is most frequent one
 [1] Before Before Before Before Before Before Before Before Before Before
[11] Before Before Before Before Before Before Before Before Before Before
[21] Before Before Before Before Before Before Before Before Before Before
[31] After  After  After  After  After  After  After  After  After  After 
[41] After  After  After  After  After  After  After  After  After  After 
[51] After  After  After  After  After  After 
Levels: Before After
forcats::fct_count(z)
# A tibble: 2 × 2
  f          n
  <fct>  <int>
1 Before    30
2 After     26

Make z ordered with level After preceding Before. Does ordering impact the behavior of forcats::fct_count()?

Dataframes, tibbles and data.tables

A dataframe is a list of vectors with equal lengths. This is the way R represents and manipulates multivariate samples.

Any software geared at data science supports some kind of dataframe

  • Python Pandas
  • Python Dask
  • Spark

The iris dataset is the “Hello world!” of dataframes.

data(iris)

iris %>%
  glimpse()
## Rows: 150
## Columns: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.…
## $ Sepal.Width  <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.…
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.…
## $ Petal.Width  <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.…
## $ Species      <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…

A matrix can be transformed into a data.frame

A <- matrix(rnorm(10), ncol=2)
data.frame(A)
##           X1         X2
## 1  1.1814200 -0.1240341
## 2  0.3384742  1.8443889
## 3 -0.3134458  0.6991699
## 4 -0.9782615 -0.4662820
## 5  1.0304221 -0.3044345

There are several flavors of dataframes in R: tibble and data.table are modern variants of data.frame.

t <- tibble::tibble(x=1:3, a=letters[11:13], d=Sys.Date() + 1:3)

head(t)
## # A tibble: 3 × 3
##       x a     d         
##   <int> <chr> <date>    
## 1     1 k     2024-01-25
## 2     2 l     2024-01-26
## 3     3 m     2024-01-27
glimpse(t)
## Rows: 3
## Columns: 3
## $ x <int> 1, 2, 3
## $ a <chr> "k", "l", "m"
## $ d <date> 2024-01-25, 2024-01-26, 2024-01-27
ref(t)
## █ [1:0x557a2d7312a8] <tibble[,3]> 
## ├─x = [2:0x557a2c83f498] <int> 
## ├─a = [3:0x557a2d7325b8] <chr> 
## └─d = [4:0x557a2d731e38] <date>

Perform a random permutation of the columns of a data.frame/tibble.

Function sample() from base R is very convenient

nycflights data

Wrestling with tables is part of the data scientist job. Out of the box data are often messy. In order to perform useful data analysis, we need tidy data. The notion of tidy data was elaborated during the last decade by experienced data scientists.

You may benefit from looking at the following online documents.

Tidy data in R for Data Science

Introduction to Table manipulation in R for Data Science in R.

More data of that kind is available following guidelines from https://github.com/hadley/nycflights13

In this exercise, you are advised to use functions from dplyr.

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges.

data <- nycflights13::flights
  • Have a glimpse at the data.
  • What is the class of object data?
  • What kind of object is data?

Hint: use class(), is.data.frame() tibble::is_tibble()

  • Extract the name and the type of each column.

Compute the mean of the numerical columns

Base R has plenty of functions that perform statistical computations on univariate samples. Look at the documentation of mean (just type ?mean). For a while, leave aside the optional arguments.

In database parlance, we are performing aggregation

mean(data$dep_delay)
[1] NA
# mean(data[["dep_delay"]])
  • If we want the mean of all numerical columns, we need to project the data frame on numerical columns.

A verb of the summarize family can be useful.

Have a look at across in latest versions of dplyr()

Use across() from dplyr 1.x. See Documentation

If applied to a data.frame, summary(), produces a summary of each column. The summary depends on the column type. The output of summary is a shortened version the list of outputs obtained from applying summary to each column (lapply(data, summary)).

data %>%
  summary()
      year          month             day           dep_time    sched_dep_time
 Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
 1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
 Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
 Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
 3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
 Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
                                                 NA's   :8255                 
   dep_delay          arr_time    sched_arr_time   arr_delay       
 Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
 1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
 Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
 Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
 3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
 Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
 NA's   :8255      NA's   :8713                  NA's   :9430      
   carrier              flight       tailnum             origin         
 Length:336776      Min.   :   1   Length:336776      Length:336776     
 Class :character   1st Qu.: 553   Class :character   Class :character  
 Mode  :character   Median :1496   Mode  :character   Mode  :character  
                    Mean   :1972                                        
                    3rd Qu.:3465                                        
                    Max.   :8500                                        
                                                                        
     dest              air_time        distance         hour      
 Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
 Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
 Mode  :character   Median :129.0   Median : 872   Median :13.00  
                    Mean   :150.7   Mean   :1040   Mean   :13.18  
                    3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
                    Max.   :695.0   Max.   :4983   Max.   :23.00  
                    NA's   :9430                                  
     minute        time_hour                  
 Min.   : 0.00   Min.   :2013-01-01 05:00:00  
 1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00  
 Median :29.00   Median :2013-07-03 10:00:00  
 Mean   :26.23   Mean   :2013-07-03 05:22:54  
 3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00  
 Max.   :59.00   Max.   :2013-12-31 23:00:00  
                                              

Handling NAs

We add now a few NAs to the data….

data2 <- data
data2$arr_time[1:10] <- NA

Houston, we have a problem!

How should we compute the column means now?

It is time to look at optional arguments of function mean.

  • Decide to ignore NA and to compute the mean with the available data

Note: it is possible to remove all rows that contain at least one NA.

  • Show this leads to a different result.
  • Compute the minimum, the median, the mean and the maximum of numerical columns
  • Obtain a nicer output!

Check with https://dplyr.tidyverse.org/reference/scoped.html?q=funs#arguments

  • Mimic summary on numeric columns
  • Compute a new itinerary column concatenating the origin and dest one.

Have a look at Section Operate on a selection of variables

  • Compute the coefficient of variation (ratio between the standard deviation and the mean) for each itinerary. Can you find several ways?
  • Compute for each flight the ratio between the distance and the air_time in different ways and compare the execution time (use Sys.time()).
  • Which carrier suffers the most delay?

Puzzle

year <- 2012L

data %>%
  dplyr::select(year, dest, origin) %>%
  head()
## # A tibble: 6 × 3
##    year dest  origin
##   <int> <chr> <chr> 
## 1  2013 IAH   EWR   
## 2  2013 IAH   LGA   
## 3  2013 MIA   JFK   
## 4  2013 BQN   JFK   
## 5  2013 ATL   LGA   
## 6  2013 ORD   EWR

data %>%
  dplyr::filter(year==year) %>%
  dplyr::summarize(n())
## # A tibble: 1 × 1
##    `n()`
##    <int>
## 1 336776

data %>%
  dplyr::filter(year==2012L) %>%
  dplyr::summarize(n())
## # A tibble: 1 × 1
##   `n()`
##   <int>
## 1     0

data %>%
  dplyr::filter(year==.env$year) %>%
  dplyr::summarize(n()) 
## # A tibble: 1 × 1
##   `n()`
##   <int>
## 1     0

data %>%
  dplyr::filter(year==.data$year) %>%
  dplyr::summarize(n()) 
## # A tibble: 1 × 1
##    `n()`
##    <int>
## 1 336776
  • Can you explain what happens?

Flow control

R offers the usual flow control constructs:

  • branching/alternative if (...) {...} else {...}
  • iterations (while/for) while (...) {...} for (it in iterable) {...}
  • function calling callable(...) (how do we pass arguments? how do we rely on defaults?)

If () then {} else

There exists a selection function ifelse(test, yes_expr, no_expr).

ifelse(test, yes, no)

If expressions yes_expr and no_expr are complicated it makes sense to use the if (...) {...} else {...} construct

Note that ifelse(...) is vectorized.

x <-  1L:6L
y <-  rep("odd", 6)
z <- rep("even", 6)

ifelse(x %% 2L, y, z)
## [1] "odd"  "even" "odd"  "even" "odd"  "even"

There is also a conditional statement with an optional else {}

if (condition) {

} else {
  
}

Is there an elif construct in R?

R also offers a switch

switch (object,
  case1 = {action1}, 
  case2 = {action2}, 
  ...
)

Iterations for (it in iterable) {...}

Have a look at Iteration section in R for Data Science

  • Create a lower triangular matrix which represents the 5 first lines of the Pascal triangle.

Recall

\[\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}\]

  • Locate the smallest element in a numerical vector

While (condition) {…}

  • Find the location of the minimum in a vector v
  • Write a loop that checks whether vector v is non-decreasing.
  • Write a loop that perform binary search in a non-decreasing vector.

Functions

To define a function, whether named or not, you can use the function constructor.

foo <- function() {
  # body
  1
}
  • Write a function that checks whether vector v is non-decreasing.
  • Write a function with integer parameter \(n\), that returns the Pascal Triangle with \(n+1\) rows.
  • How would you generate a Fibonacci sequence of length \(n\) ?

Recall the Fibonacci sequence is defined by

\[F_{n+2} = F_{n+1} + F_n \qquad F_1= F_2 = 1\]

Functional programming

In R, functions are first class entities, they can be defined at run-time, they can be used as function arguments. You can define list of functions, and iterate over them.

Try to use https://purrr.tidyverse.org.

Package purrr::map_

  • Write truth tables for &, |, &&, ||, ! and xor
  • Write a function that takes as input a square matrix and returns TRUE if it is lower triangular.
  • Use map , choose and proper use of pronouns to deliver the n first lines of the Pascal triangle using one line of code.
  • As far as the total number of operations is concerned, would you recommend this way of computing the Pascal triangle?

Further exploration

This notebook walked you through some aspects of R and its packages. We just saw the tip of the iceberg.

We barely mentioned:

  • (Non-standard) Lazy evaluation
  • Different flavors of object oriented programming
  • Connection with C++: RCpp
  • Connection with databases: dbplyr
  • Building modeling pipelines: tidymodels
  • Concurrency
  • Building packages
  • Building interactive Apps: Shiny
  • Attributes (metadata)
  • Formulae formula
  • Strings stringi, stringr
  • Dates lubridate
  • and plenty other things ….

References