pacman::p_load(tidyverse)pacman::p_load(glue)pacman::p_load(tidyr)pacman::p_load(imager)pacman::p_load(here)pacman::p_load(plotly)img <- load.image(here("img", "iris-fleur-histoire.jpeg"))str(img)
## 'cimg' num [1:560, 1:373, 1, 1:3] 0.0902 0.0941 0.098 0.098 0.098 ...
dim(img)
## [1] 560 373 1 3
img_df <- img_df_long %>% tidyr::pivot_wider(names_from = y, values_from = value)img_df %>% head()
## # A tibble: 6 × 374## x `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11` `12`## <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 1 0.145 0.145 0.149 0.153 0.157 0.161 0.165 0.165 0.161 0.165 0.169 0.169## 2 2 0.149 0.153 0.153 0.153 0.157 0.157 0.161 0.161 0.165 0.165 0.165 0.169## 3 3 0.153 0.153 0.157 0.157 0.158 0.162 0.161 0.161 0.165 0.165 0.165 0.165## 4 4 0.153 0.153 0.157 0.157 0.162 0.162 0.165 0.165 0.165 0.165 0.165 0.165## 5 5 0.153 0.153 0.157 0.157 0.162 0.162 0.165 0.165 0.161 0.165 0.165 0.169## 6 6 0.157 0.157 0.157 0.157 0.158 0.162 0.161 0.161 0.161 0.165 0.169 0.169## # ℹ 361 more variables: `13` <dbl>, `14` <dbl>, `15` <dbl>, `16` <dbl>,## # `17` <dbl>, `18` <dbl>, `19` <dbl>, `20` <dbl>, `21` <dbl>, `22` <dbl>,## # `23` <dbl>, `24` <dbl>, `25` <dbl>, `26` <dbl>, `27` <dbl>, `28` <dbl>,## # `29` <dbl>, `30` <dbl>, `31` <dbl>, `32` <dbl>, `33` <dbl>, `34` <dbl>,## # `35` <dbl>, `36` <dbl>, `37` <dbl>, `38` <dbl>, `39` <dbl>, `40` <dbl>,## # `41` <dbl>, `42` <dbl>, `43` <dbl>, `44` <dbl>, `45` <dbl>, `46` <dbl>,## # `47` <dbl>, `48` <dbl>, `49` <dbl>, `50` <dbl>, `51` <dbl>, `52` <dbl>, …
img_pca <- img_df %>% dplyr::select(-x) %>% prcomp(scale = TRUE, center = TRUE)img_pca %>% broom::tidy(matrix="d") %>% head()
## # A tibble: 6 × 4## PC std.dev percent cumulative## <dbl> <dbl> <dbl> <dbl>## 1 1 12.9 0.444 0.444## 2 2 9.28 0.231 0.675## 3 3 6.16 0.102 0.777## 4 4 4.73 0.0601 0.837## 5 5 3.59 0.0345 0.871## 6 6 3.18 0.0271 0.898
reverse_pca <- function(n_comp = 20, pca_object = img_pca){ # [From Kieran Healy] recon <- pca_object$x[, 1:n_comp] %*% t(pca_object$rotation[, 1:n_comp]) if(all(pca_object$scale != FALSE)){ recon <- scale(recon, center = FALSE, scale = 1/pca_object$scale) } if(all(pca_object$center != FALSE)){ recon <- scale(recon, scale = FALSE, center = -1 * pca_object$center) } recon_df <- data.frame(cbind(1:nrow(recon), recon)) colnames(recon_df) <- c("x", 1:(ncol(recon_df)-1)) recon_df_long <- recon_df %>% tidyr::pivot_longer(cols = -x, names_to = "y", values_to = "value") %>% mutate(y = as.numeric(y)) %>% arrange(y) %>% as.data.frame() recon_df_long}
q <- recovered_imgs %>% filter(pcs==2) %>% ggplot() + aes(x = x, y = y, fill = value, frame=pcs)q_out <- q + geom_raster() + scale_y_reverse() + scale_fill_gradient(low = "black", high = "white") + guides(fill = "none") + coord_fixed() + labs(title = glue("Recovering the content of an {nrow(img_df)}x{ncol(img_df)} pixel image\nfrom a PCA of its pixels")) + theme_minimal()
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
o | Tile View: Overview of Slides |
Esc | Back to slideshow |
pacman::p_load(tidyverse)pacman::p_load(glue)pacman::p_load(tidyr)pacman::p_load(imager)pacman::p_load(here)pacman::p_load(plotly)img <- load.image(here("img", "iris-fleur-histoire.jpeg"))str(img)
## 'cimg' num [1:560, 1:373, 1, 1:3] 0.0902 0.0941 0.098 0.098 0.098 ...
dim(img)
## [1] 560 373 1 3
img_df <- img_df_long %>% tidyr::pivot_wider(names_from = y, values_from = value)img_df %>% head()
## # A tibble: 6 × 374## x `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11` `12`## <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 1 0.145 0.145 0.149 0.153 0.157 0.161 0.165 0.165 0.161 0.165 0.169 0.169## 2 2 0.149 0.153 0.153 0.153 0.157 0.157 0.161 0.161 0.165 0.165 0.165 0.169## 3 3 0.153 0.153 0.157 0.157 0.158 0.162 0.161 0.161 0.165 0.165 0.165 0.165## 4 4 0.153 0.153 0.157 0.157 0.162 0.162 0.165 0.165 0.165 0.165 0.165 0.165## 5 5 0.153 0.153 0.157 0.157 0.162 0.162 0.165 0.165 0.161 0.165 0.165 0.169## 6 6 0.157 0.157 0.157 0.157 0.158 0.162 0.161 0.161 0.161 0.165 0.169 0.169## # ℹ 361 more variables: `13` <dbl>, `14` <dbl>, `15` <dbl>, `16` <dbl>,## # `17` <dbl>, `18` <dbl>, `19` <dbl>, `20` <dbl>, `21` <dbl>, `22` <dbl>,## # `23` <dbl>, `24` <dbl>, `25` <dbl>, `26` <dbl>, `27` <dbl>, `28` <dbl>,## # `29` <dbl>, `30` <dbl>, `31` <dbl>, `32` <dbl>, `33` <dbl>, `34` <dbl>,## # `35` <dbl>, `36` <dbl>, `37` <dbl>, `38` <dbl>, `39` <dbl>, `40` <dbl>,## # `41` <dbl>, `42` <dbl>, `43` <dbl>, `44` <dbl>, `45` <dbl>, `46` <dbl>,## # `47` <dbl>, `48` <dbl>, `49` <dbl>, `50` <dbl>, `51` <dbl>, `52` <dbl>, …
img_pca <- img_df %>% dplyr::select(-x) %>% prcomp(scale = TRUE, center = TRUE)img_pca %>% broom::tidy(matrix="d") %>% head()
## # A tibble: 6 × 4## PC std.dev percent cumulative## <dbl> <dbl> <dbl> <dbl>## 1 1 12.9 0.444 0.444## 2 2 9.28 0.231 0.675## 3 3 6.16 0.102 0.777## 4 4 4.73 0.0601 0.837## 5 5 3.59 0.0345 0.871## 6 6 3.18 0.0271 0.898
reverse_pca <- function(n_comp = 20, pca_object = img_pca){ # [From Kieran Healy] recon <- pca_object$x[, 1:n_comp] %*% t(pca_object$rotation[, 1:n_comp]) if(all(pca_object$scale != FALSE)){ recon <- scale(recon, center = FALSE, scale = 1/pca_object$scale) } if(all(pca_object$center != FALSE)){ recon <- scale(recon, scale = FALSE, center = -1 * pca_object$center) } recon_df <- data.frame(cbind(1:nrow(recon), recon)) colnames(recon_df) <- c("x", 1:(ncol(recon_df)-1)) recon_df_long <- recon_df %>% tidyr::pivot_longer(cols = -x, names_to = "y", values_to = "value") %>% mutate(y = as.numeric(y)) %>% arrange(y) %>% as.data.frame() recon_df_long}
q <- recovered_imgs %>% filter(pcs==2) %>% ggplot() + aes(x = x, y = y, fill = value, frame=pcs)q_out <- q + geom_raster() + scale_y_reverse() + scale_fill_gradient(low = "black", high = "white") + guides(fill = "none") + coord_fixed() + labs(title = glue("Recovering the content of an {nrow(img_df)}x{ncol(img_df)} pixel image\nfrom a PCA of its pixels")) + theme_minimal()