
EDA
R Introduction

Licence 3 MIASHS
2023–2024

• L3 MIASHS
• Université Paris Cité
• Année 2023-2024
• Course Homepage
• Moodle

This lab intends to walk you through basic aspects of the R language and program-
ming environment.
Readers who really want to learn R should spend time on

• R for Data Science by Wickham, Çetinkaya-Rundel, and Grolemund.
• Advanced R 2nd Edition by Wickham
• Advanced R Solutions by Grosser and Bumann
• Hands-On Programming with R by Grolemund

Don’t go without Base R cheatsheet

Packages

Base R can do a lot. But the full power of R comes from a fast growing collection of packages.

Packages are first installed (that is downloaded from cran and copied somewhere on the
hard drive), and if needed, loaded during a session.

• Installation can usually be performed using command install.packages(). In some
circumstances, ad hoc installation commands (often from packages devtools) are
needed

• Once a package has been installed/downloaded on your drive
– if you want all objects exported by the package to be available in your session, you

should load the package, using library() or require() (what’s the difference?).
Technically, this loads the NameSpace defined by the package.

– if you just want to pick some objects exported from the package, you can use
qualified names like package_name::object_name to access the object (function,
dataset, …).

For example. when we write

gapminder <- gapminder::gapminder

we assign dataframe gapminder from package gapminder to identifier "gapminder" in global
environment .

Function p_load() from pacman (package manager) blends installation and loading:
if the package named in the argument of p_load() is not installed (not among the
installed.packages()), p_load() attempts to install the package. If installation is
successful, the package is loaded.

to_be_loaded <- c("devtools",
"tidyverse",
"lobstr",
"ggforce",
"nycflights13",
"patchwork",
"glue",
"DT",
"kableExtra",

1

https://www.u-paris.fr
https://stephane-v-boucheron.fr/courses/isidata
https://r4ds.hadley.nz
https://adv-r.hadley.nz
https://advanced-r-solutions.rbind.io
https://rstudio-education.github.io/hopr
https://rstudio.github.io/cheatsheets/base-r.pdf

EDA
R Introduction

Licence 3 MIASHS
2023–2024

"viridis")

for (pck in to_be_loaded) {
if (!require(pck, character.only = T)) {

install.packages(pck, repos="http://cran.rstudio.com/")
stopifnot(require(pck, character.only = T))

}
}

A very nice feature of R is that functions from base R as well as from packages have optional
arguments with sensible default values. Look for example at documentation of require()
using expression ?require.

Optional settings may concern individual functions or the collection of functions exported
by some packages. In the next chunk, we reset the default color scales used by graphical
functions from ggplot2.

opts <- options() # save old options

options(ggplot2.discrete.colour="viridis")
options(ggplot2.continuous.colour="viridis")

Numerical (atomic) vectors
Numerical (atomic) vectors form the most primitive type of R.

Vector creation and assignment
The next three lines create three numerical atomic vectors.

In IDE Rstudio, have a look at the environment pane on the right before running the chunk,
and after.

Use ls() to investigate the environment before and after the execution of the three assign-
ments.

ls()
[1] "has_annotations" "opts" "params" "pck"
[5] "to_be_loaded"
x <- c(1, 2, 12)
y <- 5:7
z <- 10:1
x ; y ; z
[1] 1 2 12
[1] 5 6 7
[1] 10 9 8 7 6 5 4 3 2 1
ls()
[1] "has_annotations" "opts" "params" "pck"
[5] "to_be_loaded" "x" "y" "z"

What does the next chunk?

2

EDA
R Introduction

Licence 3 MIASHS
2023–2024

ls()
[1] "has_annotations" "opts" "params" "pck"
[5] "to_be_loaded" "x" "y" "z"
w <- y
ls()
[1] "has_annotations" "opts" "params" "pck"
[5] "to_be_loaded" "w" "x" "y"
[9] "z"

• Is the content of object denoted by y copied to a new object bound to w?
• Interpret the result of w == y.
• Interpret the result of identical(w,y) (use help("identical") if needed).

w == y
[1] TRUE TRUE TRUE
identical(w,y)
[1] TRUE

Indexation, slicing, modification
Slicing a vector can be done in two ways:

• providing a vector of indices to be selected. Indices need not be consecutive
• providing a Boolean mask, that is a logical vector to select a set of positions

x <- c(1, 2, 12) ; y <- 5:7 ; z <- 10:1

• Explain the next lines

z[1] # slice of length 1
[1] 10
z[0] # What did you expect?
integer(0)
z[x] # slice of length ??? index error ?
[1] 10 9 NA
z[y]
[1] 6 5 4
z[x %% 2] # what happens with x[0] ?
[1] 10
z[0 == (x %% 2)] # masking
[1] 9 8 6 5 3 2
z[c(2, 1, 1)]
[1] 9 10 10

• If the length of mask and and the length of the sliced vector do not coincide, what
happens?

3

EDA
R Introduction

Licence 3 MIASHS
2023–2024

A scalar is just a vector of length 1!

class(z)
[1] "integer"
class(z[1])
[1] "integer"
class(z[c(2,1)])
[1] "integer"

• Explain the next lines

y[2:3] <- z[2:3]
y == z[-10]

[1] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

z[-11]

[1] 10 9 8 7 6 5 4 3 2 1

• Explain the next line

z[-(1:5)]
[1] 5 4 3 2 1

• How would you select the last element from a vector (say z)?

• Reverse the entries of a vector. Find two ways to do that.

In statistics, machine learning, we are often faced with the task of building grid of regularly
spaced elements (these elements can be numeric or not). R offers a collection of tools to
perform this. The most basic tool is rep().

• Repeat a vector 2 times
• Repeat each element of a vector twice

Let us remove objects from the global environment.

rm(w, x, y ,z)

Numbers
So far, we told about numeric vectors. Numeric vectors are vectors of floating point numbers.
R distinguishes several kinds of numbers.

• Integers
• Floating point numbers (double)

To check whether a vector is made of numeric or of integer, use is.numeric() or
is.integer(). Use as.integer, as.numeric() to enforce type conversion.

Explain the outcome of the next chunk

class(113L) ; class(113) ; class(113L + 113) ; class(2 * 113L) ; class(pi) ; as.integer(pi)
[1] "integer"

4

EDA
R Introduction

Licence 3 MIASHS
2023–2024

[1] "numeric"
[1] "numeric"
[1] "numeric"
[1] "numeric"
[1] 3

class(as.integer(113))
[1] "integer"

pi ; class(pi)
[1] 3.141593
[1] "numeric"

floor(pi) ; class(floor(pi)) # mind the floor
[1] 3
[1] "numeric"

Integer arithmetic

29L * 31L ; 899L %/% 32L ; 899L %% 30L
[1] 899
[1] 28
[1] 29

5

EDA
R Introduction

Licence 3 MIASHS
2023–2024

R integers are not the natural numbers from Mathematics
R numerics are not the real numbers from Mathematics

.Machine$double.eps
[1] 2.220446e-16
.Machine$double.xmax
[1] 1.797693e+308
.Machine$sizeof.longlong
[1] 8

u <- double(19L)
v <- numeric(5L)
w <- integer(7L)
lapply(list(u, v, w), typeof)
[[1]]
[1] "double"
##
[[2]]
[1] "double"
##
[[3]]
[1] "integer"
length(c(u, v, w))
[1] 31
typeof(c(u, v, w))
[1] "double"

R is (sometimes) able to make sensible use of Infinite.

log(0)
[1] -Inf
log(Inf)
[1] Inf
1/0
[1] Inf
0/0
[1] NaN
max(c(0/0,1,10))
[1] NaN
max(c(NA,1,10))
[1] NA
max(c(-Inf,1,10))
[1] 10
is.finite(c(-Inf,1,10))
[1] FALSE TRUE TRUE
is.na(c(NA,1,10))
[1] TRUE FALSE FALSE
is.nan(c(NaN,1,10))
[1] TRUE FALSE FALSE

6

EDA
R Introduction

Licence 3 MIASHS
2023–2024

Computing with vectors
Summing, scalar multiplication

x <- 1:3
y <- 9:7

sum(x) ; prod(x)
[1] 6
[1] 6

z <- cumsum(1:3)
w <- cumprod(3:5)

x + y
[1] 10 10 10
x + z
[1] 2 5 9
2 * w
[1] 6 24 120
2 + w
[1] 5 14 62
w / 2
[1] 1.5 6.0 30.0

• How would you compute a factorial?

• Approximate ∑∞
𝑛=1 1/𝑛2 within 10−3?

• How would you compute the inner product between two (atomic numeric) vectors?

What we have called vectors so far are indeed atomic vectors.
• Read Chapter on Vectors in R advanced Programming
• Keep an eye on package vctrs for getting insights into the R vectors.

Numerical matrices
R offers a matrix class.

A <- matrix(1:50, nrow=5)
A
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 6 11 16 21 26 31 36 41 46
[2,] 2 7 12 17 22 27 32 37 42 47
[3,] 3 8 13 18 23 28 33 38 43 48
[4,] 4 9 14 19 24 29 34 39 44 49
[5,] 5 10 15 20 25 30 35 40 45 50
class(A)
[1] "matrix" "array"

• From the evaluation of the preceding chunk, can you guess whether it is easier the
traverse a matrix in row first order or in column first order?

7

https://adv-r.hadley.nz/vectors-chap.html
https://vctrs.r-lib.org/

EDA
R Introduction

Licence 3 MIASHS
2023–2024

Creation, transposition and reshaping
A vector can be turned into a column matrix.

v <- as.matrix(1:5)
v
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5

t(v) # transpose
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
cat(dim(v), ' ', dim(t(v)), '\n')
5 1 1 5

A <- matrix(1, nrow=5, ncol=2) ; A
[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1
[5,] 1 1

• Is there a difference between the next two assignments?
• How would you assign value to all entries of a matrix?

A[] <- 0 ; A
[,1] [,2]
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0
[5,] 0 0
A <- 0 ; A
[1] 0

A <- matrix(1, nrow=5, ncol=2) ; A
[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1
[5,] 1 1
A[] <- 1:15 ; A
[,1] [,2]
[1,] 1 6
[2,] 2 7

8

EDA
R Introduction

Licence 3 MIASHS
2023–2024

[3,] 3 8
[4,] 4 9
[5,] 5 10

diag(1, 3) # building identity matrix
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

matrix(0, 3, 3) # building null matrix
[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0

Is there any difference between the next two assignments?

B <- A[]
B ; A
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
lobstr::obj_addr(B) ; lobstr::obj_addr(A)
[1] "0x55ae316f17b8"
[1] "0x55ae330e9498"
B <- A

Indexation, slicing, modification
Indexation consists in getting one item from a vector/list/matrix/array/dataframe.

Slicing and subsetting consists in picking a substructure:

• subsetting a vector returns a vector

• subsetting a list returns a list

• subsetting a matrix/array returns a matrix/array (beware of implicit simplifications
and dimension dropping)

• subsetting a dataframe returns a dataframe or a vector (again, beware of implicit
simplifications).

• Explain the next results

9

EDA
R Introduction

Licence 3 MIASHS
2023–2024

A <- matrix(1, nrow=5, ncol=2)

dim(A[sample(5, 3), -1])
NULL
dim(A[sample(5, 3), 1])
NULL
length(A[sample(5, 3), 1])
[1] 3
is.vector(A[sample(5, 3), 1])
[1] TRUE
A[10:15]
[1] 1 NA NA NA NA NA
A[60]
[1] NA
dim(A[])
[1] 5 2

• How would you create a fresh copy of a matrix?

Computing with matrices
* versus %*% %*% stands for matrix multiplication. In order to use it, the two matrices

should have conformant dimensions.

t(v) %*% A
[,1] [,2]
[1,] 15 15

There are a variety of reasonable products around. Some of them are available in R.

• How would you compute the Hilbert-Schmidt inner product between two matrices?

⟨𝐴, 𝐵⟩HS = Trace(𝐴 × 𝐵𝑇)
• How can you invert a square (invertible) matrix?

Logicals
• R has constants TRUE and FALSE.

• Numbers can be coerced to logicals.

• Which numbers are truthies? falsies?

• What is the value (if any) of ! pi & TRUE ?

• What is the meaning of all() ?

• What is the meaning of any() ?

• Recall De Morgan’s laws. Check them with R.

• Is | denoting an inclusive or an exclusive OR?

w <- c(TRUE, FALSE, FALSE)

10

EDA
R Introduction

Licence 3 MIASHS
2023–2024

sum(w)
[1] 1
any(w)
[1] TRUE
all(w)
[1] FALSE

!w
[1] FALSE TRUE TRUE

TRUE & FALSE
[1] FALSE
TRUE | FALSE
[1] TRUE
TRUE | TRUE
[1] TRUE

Handling three-valued logic
Read and understand the next expressions

TRUE & (1> (0/0))
[1] NA
(1> (0/0)) | TRUE
[1] TRUE
(1> (0/0)) | FALSE
[1] NA
TRUE || (1> (0/0))
[1] TRUE
TRUE | (1> (0/0))
[1] TRUE
TRUE || stopifnot(4<3)
[1] TRUE
TRUE | stopifnot(4<3) # uncomment to see outcome
FALSE && stopifnot(4<3)
[1] FALSE
FALSE & stopifnot(4<3)

• What is the difference between logical operators || and | ?

Remark: favor &, | over &&, ||.

all and any

Look at the definition of all and any.

How would you check that a square matrix is symmetric?

Lists
While an instance of an atomic vector contains objects of the same type/class, an instance
of list may contain objects of widely different types.

11

EDA
R Introduction

Licence 3 MIASHS
2023–2024

• Check the output of the next chunk

p <- c(2, 7, 8)
q <- c("A", "B", "C")
x <- list(p, q)
x[2]
[[1]]
[1] "A" "B" "C"
x
[[1]]
[1] 2 7 8
##
[[2]]
[1] "A" "B" "C"
length(x)
[1] 2
rlang::is_vector(x)
[1] TRUE
rlang::is_atomic(x)
[1] FALSE
y <- c(p, q)
y
[1] "2" "7" "8" "A" "B" "C"
length(y)
[1] 6
rlang::is_atomic(y)
[1] TRUE
rlang::is_list(y)
[1] FALSE

• How would you build a list made of p, q, and x?
• What is x[2] made of?
• How does it compare with x[[2]]?

Read and understand the next expressions.

is_atomic(p); is_atomic(p[2]) ; is_atomic(p[[2]])
[1] TRUE
[1] TRUE
[1] TRUE

is_list(q); is_atomic(q)
[1] FALSE
[1] TRUE

is_list(x); is_atomic(x) ; class(x)
[1] TRUE
[1] FALSE
[1] "list"

class(x[2]) ; class(x[[2]])
[1] "list"
[1] "character"

12

EDA
R Introduction

Licence 3 MIASHS
2023–2024

length(x[2]) ; length(x[[2]])
[1] 1
[1] 3

identical(q, x[[2]]) ; identical(q, x[2])
[1] TRUE
[1] FALSE

obj_addr(q) ; obj_addr(x[[2]]) ; obj_addr(x[2])
[1] "0x55ae32bda5d8"
[1] "0x55ae32bda5d8"
[1] "0x55ae3363f3f0"
ref(x)
� [1:0x55ae30cedc78] <list>
��[2:0x55ae33330a58] <dbl>
��[3:0x55ae32bda5d8] <chr>
obj_addrs(x)
[1] "0x55ae33330a58" "0x55ae32bda5d8"
identical(x[2],x[[2]])
[1] FALSE

Functions is_atomic(), is_list(), ..., obj_addr() are from packages rlang
and lobstr. See https://rlang.r-lib.org and https://lobstr.r-lib.org

• How would you replace "A" in x with "K"?

Lookup tables (aka dictionaries) using named vectors
A lookup table maps strings to values. It can be implemented using named vectors. If we
want to map: "seine" to "75", "loire" to "42", "rhone" to "69", "savoie" to "73" we
can proceed in the following way:

codes <- c(75L, 42L, 69L, 73L)
names(codes) <- c("seine", "loire", "rhone", "savoie")

codes["rhone"]; codes["aube"]
rhone
69
<NA>
NA

• what is the class of codes ?

• Capitalize the names used by codes

Package stringr offers a function str_to_title() that could be of interest.

Read Chapter on Lists in R advanced Programming

13

https://rlang.r-lib.org
https://lobstr.r-lib.org
https://adv-r.hadley.nz/vectors-chap.html#lists

EDA
R Introduction

Licence 3 MIASHS
2023–2024

Factors
Factors exist in Base R. They play a very important role. Qualitative/Categorical variables
are implemented as Factors.

Meta-package tidyverse offers a package dedicated to factor engineering: forcats.

yraw <- c("g1","g1","g2","g2","g2","g3")
print(yraw)
[1] "g1" "g1" "g2" "g2" "g2" "g3"
summary(yraw)
Length Class Mode
6 character character
is.vector(yraw) ; is.atomic(yraw)
[1] TRUE
[1] TRUE

yraw takes few values. It makes sense to make it a factor. How does it change the behavior
of generic function summary ?

fyraw <- as.factor(yraw)
levels(fyraw)
[1] "g1" "g2" "g3"

summary(fyraw)
g1 g2 g3
2 3 1

Load the (celebrated) iris dataset, and inspect variable Species

data(iris)

species <- iris$Species

levels(species)

[1] "setosa" "versicolor" "virginica"

summary(species)

setosa versicolor virginica
50 50 50

We may want to collapse virginica and versicolor into a single level called versinica

forcats offer a function fct_collapse.

Factors are used to represent categorical variables.

Load the whiteside data from package MASS.

Have a glimpse.

Assign column Insul to y

• What is the class of y?

14

EDA
R Introduction

Licence 3 MIASHS
2023–2024

• Is y a vector
• Is y ordered? What does ordered mean here?
• What are the levels of y ? How many levels has y?
• Can you slice y ?
• What are the binary representations of the different levels of y?

Summarize factor y

Factors nuts and bolts

When coercing a vector (integer, character, …) to a factor, use forcats::as_factor() rather
than base R as.factor().

Useful function to make nice barplots when constructing barplots.

Recall that when you want to display counts for a univariate categorical sample, you use a
barplot. It is often desirable to rank the levels according to the displayed statistics (usually
a count).

This can be done in a seamless way using functions like forcats::fct_infreq().

forcats::fct_count(y, prop = TRUE)

A tibble: 2 x 3
f n p
<fct> <int> <dbl>

1 Before 26 0.464
2 After 30 0.536

z <- sample(y, length(y), replace = TRUE) # permutation of whiteside$Insul

sort(forcats::fct_infreq(z)) # first level is most frequent one

[1] Before Before Before Before Before Before Before Before Before Before
[11] Before Before Before Before Before Before Before Before Before Before
[21] Before Before Before Before Before Before Before Before After After
[31] After After After After After After After After After After
[41] After After After After After After After After After After
[51] After After After After After After
Levels: Before After

forcats::fct_count(z)

A tibble: 2 x 2
f n
<fct> <int>

1 Before 28
2 After 28

Make z ordered with level After preceding Before. Does ordering impact the behavior of
forcats::fct_count()?

Read Chapter on Factors in R for Data Science

15

https://r4ds.hadley.nz/factors

EDA
R Introduction

Licence 3 MIASHS
2023–2024

Dataframes, tibbles and data.tables

A dataframe is a list of vectors with equal lengths. This is the way R represents and manip-
ulates multivariate samples.

Any software geared at data science supports some kind of dataframe

• Python Pandas
• Python Dask
• Spark
• …

The iris dataset is the “Hello world!” of dataframes.

data(iris)

iris %>%
glimpse()

Rows: 150
Columns: 5
$ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~
$ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~
$ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~
$ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~
$ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~

A matrix can be transformed into a data.frame

A <- matrix(rnorm(10), ncol=2)
data.frame(A)
X1 X2
1 -1.4527774 0.23278818
2 -0.4014570 0.77328577
3 0.2740207 0.06008901
4 1.7435872 -0.19765000
5 1.0798907 0.02333815

There are several flavors of dataframes in R: tibble and data.table are modern variants of
data.frame.

t <- tibble::tibble(x=1:3, a=letters[11:13], d=Sys.Date() + 1:3)

head(t)
A tibble: 3 x 3
x a d
<int> <chr> <date>
1 1 k 2024-01-25
2 2 l 2024-01-26
3 3 m 2024-01-27

glimpse(t)
Rows: 3
Columns: 3

16

EDA
R Introduction

Licence 3 MIASHS
2023–2024

$ x <int> 1, 2, 3
$ a <chr> "k", "l", "m"
$ d <date> 2024-01-25, 2024-01-26, 2024-01-27
ref(t)
� [1:0x55ae345b7708] <tibble[,3]>
��x = [2:0x55ae2a7ae198] <int>
��a = [3:0x55ae34566e88] <chr>
��d = [4:0x55ae34579098] <date>

Read Chapter on data frames and tibbles in Advanced R

Perform a random permutation of the columns of a data.frame/tibble.

Function sample() from base R is very convenient

nycflights data
Wrestling with tables is part of the data scientist job. Out of the box data are often messy.
In order to perform useful data analysis, we need tidy data. The notion of tidy data was
elaborated during the last decade by experienced data scientists.

You may benefit from looking at the following online documents.

Tidy data in R for Data Science

Introduction to Table manipulation in R for Data Science in R.

More data of that kind is available following guidelines from https://github.com/hadley/
nycflights13

In this exercise, you are advised to use functions from dplyr.

dplyr is a grammar of data manipulation, providing a consistent set of verbs
that help you solve the most common data manipulation challenges.

data <- nycflights13::flights

• Have a glimpse at the data.
• What is the class of object data?
• What kind of object is data?

Hint: use class(), is.data.frame() tibble::is_tibble()

• Extract the name and the type of each column.

Compute the mean of the numerical columns

Base R has plenty of functions that perform statistical computations on univariate samples.
Look at the documentation of mean (just type ?mean). For a while, leave aside the optional
arguments.

In database parlance, we are performing aggregation

mean(data$dep_delay)

[1] NA

17

https://adv-r.hadley.nz/vectors-chap.html#tibble
https://r4ds.had.co.nz/tidy-data.html
https://r4ds.had.co.nz/transform.html
https://github.com/hadley/nycflights13
https://github.com/hadley/nycflights13
https://dplyr.tidyverse.org

EDA
R Introduction

Licence 3 MIASHS
2023–2024

mean(data[["dep_delay"]])

• If we want the mean of all numerical columns, we need to project the data frame on
numerical columns.

A verb of the summarize family can be useful.

Have a look at across in latest versions of dplyr()
Use across() from dplyr 1.x. See Documentation

If applied to a data.frame, summary(), produces a summary of each column. The summary
depends on the column type. The output of summary is a shortened version the list of outputs
obtained from applying summary to each column (lapply(data, summary)).

data %>%
summary()

year month day dep_time sched_dep_time
Min. :2013 Min. : 1.000 Min. : 1.00 Min. : 1 Min. : 106
1st Qu.:2013 1st Qu.: 4.000 1st Qu.: 8.00 1st Qu.: 907 1st Qu.: 906
Median :2013 Median : 7.000 Median :16.00 Median :1401 Median :1359
Mean :2013 Mean : 6.549 Mean :15.71 Mean :1349 Mean :1344
3rd Qu.:2013 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:1744 3rd Qu.:1729
Max. :2013 Max. :12.000 Max. :31.00 Max. :2400 Max. :2359

NA's :8255
dep_delay arr_time sched_arr_time arr_delay

Min. : -43.00 Min. : 1 Min. : 1 Min. : -86.000
1st Qu.: -5.00 1st Qu.:1104 1st Qu.:1124 1st Qu.: -17.000
Median : -2.00 Median :1535 Median :1556 Median : -5.000
Mean : 12.64 Mean :1502 Mean :1536 Mean : 6.895
3rd Qu.: 11.00 3rd Qu.:1940 3rd Qu.:1945 3rd Qu.: 14.000
Max. :1301.00 Max. :2400 Max. :2359 Max. :1272.000
NA's :8255 NA's :8713 NA's :9430
carrier flight tailnum origin

Length:336776 Min. : 1 Length:336776 Length:336776
Class :character 1st Qu.: 553 Class :character Class :character
Mode :character Median :1496 Mode :character Mode :character

Mean :1972
3rd Qu.:3465
Max. :8500

dest air_time distance hour
Length:336776 Min. : 20.0 Min. : 17 Min. : 1.00
Class :character 1st Qu.: 82.0 1st Qu.: 502 1st Qu.: 9.00
Mode :character Median :129.0 Median : 872 Median :13.00

Mean :150.7 Mean :1040 Mean :13.18
3rd Qu.:192.0 3rd Qu.:1389 3rd Qu.:17.00
Max. :695.0 Max. :4983 Max. :23.00
NA's :9430

minute time_hour
Min. : 0.00 Min. :2013-01-01 05:00:00
1st Qu.: 8.00 1st Qu.:2013-04-04 13:00:00
Median :29.00 Median :2013-07-03 10:00:00

18

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/across.html

EDA
R Introduction

Licence 3 MIASHS
2023–2024

Mean :26.23 Mean :2013-07-03 05:22:54
3rd Qu.:44.00 3rd Qu.:2013-10-01 07:00:00
Max. :59.00 Max. :2013-12-31 23:00:00

Handling NAs

We add now a few NAs to the data….

data2 <- data
data2$arr_time[1:10] <- NA

Houston, we have a problem!

How should we compute the column means now?

It is time to look at optional arguments of function mean.

• Decide to ignore NA and to compute the mean with the available data

Note: it is possible to remove all rows that contain at least one NA.

• Show this leads to a different result.

• Compute the minimum, the median, the mean and the maximum of numerical columns

• Obtain a nicer output!

Check with https://dplyr.tidyverse.org/reference/scoped.html?q=funs#arguments

• Mimic summary on numeric columns

• Compute a new itinerary column concatenating the origin and dest one.

Have a look at Section Operate on a selection of variables

• Compute the coefficient of variation (ratio between the standard deviation and the
mean) for each itinerary. Can you find several ways?

• Compute for each flight the ratio between the distance and the air_time in different
ways and compare the execution time (use Sys.time()).

• Which carrier suffers the most delay?

Puzzle

year <- 2012L

data %>%
dplyr::select(year, dest, origin) %>%
head()

A tibble: 6 x 3
year dest origin
<int> <chr> <chr>
1 2013 IAH EWR
2 2013 IAH LGA
3 2013 MIA JFK
4 2013 BQN JFK
5 2013 ATL LGA

19

https://dplyr.tidyverse.org/reference/scoped.html?q=funs#arguments
https://dplyr.tidyverse.org/reference/scoped.html?q=funs#arguments

EDA
R Introduction

Licence 3 MIASHS
2023–2024

6 2013 ORD EWR

data %>%
dplyr::filter(year==year) %>%
dplyr::summarize(n())

A tibble: 1 x 1
`n()`
<int>
1 336776

data %>%
dplyr::filter(year==2012L) %>%
dplyr::summarize(n())

A tibble: 1 x 1
`n()`
<int>
1 0

data %>%
dplyr::filter(year==.env$year) %>%
dplyr::summarize(n())

A tibble: 1 x 1
`n()`
<int>
1 0

data %>%
dplyr::filter(year==.data$year) %>%
dplyr::summarize(n())

A tibble: 1 x 1
`n()`
<int>
1 336776

• Can you explain what happens?

Flow control
R offers the usual flow control constructs:

• branching/alternative if (...) {...} else {...}
• iterations (while/for) while (...) {...} for (it in iterable) {...}
• function calling callable(...) (how do we pass arguments? how do we rely on

defaults?)

If () then {} else
There exists a selection function ifelse(test, yes_expr, no_expr).

ifelse(test, yes, no)

If expressions yes_expr and no_expr are complicated it makes sense to use the if (...)
{...} else {...} construct

20

EDA
R Introduction

Licence 3 MIASHS
2023–2024

Note that ifelse(...) is vectorized.

x <- 1L:6L
y <- rep("odd", 6)
z <- rep("even", 6)

ifelse(x %% 2L, y, z)
[1] "odd" "even" "odd" "even" "odd" "even"

There is also a conditional statement with an optional else {}

if (condition) {

} else {

}

Is there an elif construct in R?

R also offers a switch

switch (object,
case1 = {action1},
case2 = {action2},
...

)

Iterations for (it in iterable) {...}

Have a look at Iteration section in R for Data Science

• Create a lower triangular matrix which represents the 5 first lines of the Pascal triangle.

Recall

(𝑛
𝑘) = (𝑛 − 1

𝑘 − 1) + (𝑛 − 1
𝑘)

• Locate the smallest element in a numerical vector

While (condition) {…}
• Find the location of the minimum in a vector v

• Write a loop that checks whether vector v is non-decreasing.

• Write a loop that perform binary search in a non-decreasing vector.

Functions
To define a function, whether named or not, you can use the function constructor.

foo <- function() {
body
1

21

https://r4ds.had.co.nz/iteration.html

EDA
R Introduction

Licence 3 MIASHS
2023–2024

}

• Write a function that checks whether vector v is non-decreasing.

• Write a function with integer parameter 𝑛, that returns the Pascal Triangle with 𝑛 + 1
rows.

• How would you generate a Fibonacci sequence of length 𝑛 ?

Recall the Fibonacci sequence is defined by

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 𝐹1 = 𝐹2 = 1

Read Chapter on functions in Advanced R

Functional programming
In R, functions are first class entities, they can be defined at run-time, they can be used as
function arguments. You can define list of functions, and iterate over them.

Try to use https://purrr.tidyverse.org.

Package purrr::map_

• Write truth tables for &, |, &&, ||, ! and xor

• Write a function that takes as input a square matrix and returns TRUE if it is lower
triangular.

• Use map , choose and proper use of pronouns to deliver the n first lines of the Pascal
triangle using one line of code.

• As far as the total number of operations is concerned, would you recommend this way
of computing the Pascal triangle?

Read Chapter on Functional Programming in Advanced R

Further exploration
This notebook walked you through some aspects of R and its packages. We just saw the tip
of the iceberg.

We barely mentioned:

• (Non-standard) Lazy evaluation
• Different flavors of object oriented programming
• Connection with C++: RCpp
• Connection with databases: dbplyr
• Building modeling pipelines: tidymodels
• Concurrency
• Building packages
• Building interactive Apps: Shiny
• Attributes (metadata)
• Formulae formula
• Strings stringi, stringr

22

https://adv-r.hadley.nz/functions.html
https://purrr.tidyverse.org
https://adv-r.hadley.nz/fp.html

EDA
R Introduction

Licence 3 MIASHS
2023–2024

• Dates lubridate
• and plenty other things ….
•

References
• https://www.statmethods.net/index.html
• https://www.datacamp.com/courses/free-introduction-to-r
• dplyr videos
• ggplot2 video tutorial
• cheatsheets

23

https://www.statmethods.net/index.html
https://www.datacamp.com/courses/free-introduction-to-r
https://www.youtube.com/hashtag/dplyr
https://www.youtube.com/hashtag/ggplot2
https://posit.co/resources/cheatsheets/

	Packages
	Numerical (atomic) vectors
	Vector creation and assignment
	Indexation, slicing, modification
	Numbers
	Computing with vectors

	Numerical matrices
	Creation, transposition and reshaping
	Indexation, slicing, modification
	Computing with matrices

	Logicals
	Handling three-valued logic
	all and any

	Lists
	Lookup tables (aka dictionaries) using named vectors

	Factors
	Factors nuts and bolts

	Dataframes, tibbles and data.tables
	Perform a random permutation of the columns of a data.frame/tibble.
	nycflights data
	Compute the mean of the numerical columns
	Handling NAs
	Puzzle

	Flow control
	If () then {} else
	Iterations for (it in iterable) {...}
	While (condition) {…}

	Functions
	Functional programming
	Package purrr::map_

	Further exploration
	References

