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Error Exponents for AR Order Testing

Stéphane Boucheron and Elisabeth Gassiat

Abstract—This paper is concerned with error exponents in
testing problems raised by autoregressive (AR) modeling. The
tests to be considered are variants of generalized likelihood ratio
testing corresponding to traditional approaches to autoregressive
moving-average (ARMA) modeling estimation. In several related
problems, such as Markov order or hidden Markov model order
estimation, optimal error exponents have been determined thanks
to large deviations theory. AR order testing is specially chal-
lenging since the natural tests rely on quadratic forms of Gaussian
processes. In sharp contrast with empirical measures of Markov
chains, the large deviation principles (LDPs) satisfied by Gaussian
quadratic forms do not always admit an information-theoretic
representation. Despite this impediment, we prove the existence
of nontrivial error exponents for Gaussian AR order testing.
And furthermore, we exhibit situations where the exponents are
optimal. These results are obtained by showing that the log-like-
lihood process indexed by AR models of a given order satisfy
an LDP upper bound with a weakened information-theoretic
representation.

Index Terms—Error exponents, Gaussian processes, large devi-
ations, Levinson—-Durbin, order, test, time series.

1. INTRODUCTION
A. Nested Composite Hypothesis Testing

HIS paper is concerned with composite hypothesis testing:

a measurable space (2, .A) and two sets of probability dis-
tributions Mg and M; are given. In the sequel, we assume
My C Mj. A test is the indicator of a measurable set K C 2
called the detection region. The problem consists of choosing
K so that if P € M, the level P{K} is not too large while if
P € My \ My, the power P{K } should remain not too small.

If both My and M actually contain only one probability
distribution, the hypothesis testing problem is said to be simple,
and thanks to the Neyman—Pearson lemma (see [48], [10]), the
test design is well understood: for a given level, the most pow-
erful test consists of comparing the likelihood ratio g; }ﬁ with
a threshold.

When M and M are composite and nested, optimal test de-
sign and test analysis turn out to be much more complicated. As
a matter of fact, most powerful tests may fail to exist. And rather
than trying to construct a single test, it is common to resort to
asymptotic analysis. A filtration (A, ),en on §2 and a sequence
of tests (K, )nen are considered where, for each n, K, is A,
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measurable. It is commonplace to search for sequences of tests
with nontrivial asymptotic level

sup limsupa,(P) <1
PeMy n

with a,, (P) = P{K,} and optimal asymptotic power
inf liminf1 — 3,(P
P, L= ()

where (3, (P) = 1 — P{K,}. A sequence of tests is said to
be consistent if its asymptotic level is null while its asymptotic
power is one.

In this paper, we focus on Gaussian autoregressive (AR) pro-
cesses. The measurable space (£2,.4) consists of R™ provided
with the cylindrical o-algebra. Recall that a stationary Gaussian
process ...Y_,..., Y1, Y5, ..., Y, ... is an AR process of
order r if and only if there exists a Gaussian independent and
identically distributed sequence ...X_j,..., X1, Xo,...,
X, ... called the innovation process and a vector a € R",
where (1,a1,...,a,) is called the prediction filter, such that
foreachn € Z

Y, + i a;Yn_; = Xp.
=1

If a process is an AR process of order r but not an AR process
of order » — 1, it is said to be of order exactly 7.

We are interested in testing the order of AR processes. The
alternative hypotheses are

Hy(r) : “the order of the AR process is < r”

against
Hy(r) : “the order of the AR process is > r.”

Testing the order of a process is related to order identification
[41], [51], [44], [27], [26], [24], [21], [22] and thus, to model
selection [6], [50], [49], [7], [3], [45]. Note that testing the order
of AR processes may be regarded as an instance of testing the
order of Markov processes. In the finite-alphabet setting, the
latter problem has received distinguished attention during recent
years [22], [24], [31]. Testing the order of an AR process may
also be considered as a detection problem (see [38]).

B. Error Exponents and Large Deviation Principles

As far as AR processes are concerned, consistent sequences
of tests have been known for a while [36], [35], [37]. On the
other hand, little seems to be known about the efficiency of AR
testing procedures. In this paper, we adopt the error exponents

0018-9448/$20.00 © 2006 IEEE



BOUCHERON AND GASSIAT: ERROR EXPONENTS FOR AR ORDER TESTING

perspective that has been used since the early days of informa-
tion theory [23], [43], [31], [21], [40], [33].

A sequence of tests is said to achieve error exponent ()
(resp., E1()) at P € My (resp., P € M) if the corresponding
sequence of level functions «,() (resp., power functions
1 — Bn()) satisfies

1
lim inf = log av,, (P) < —FEy(P)
non
respectively
1
liminf = log 3, (P) < —E1(P).
non

Error exponents are nontrivial whenever they are positive.

Note that this notion of asymptotic efficiency is connected
to other notions of asymptotic efficiency in classical statistics.
For example, Bahadur efficiency provides a related but different
approach to asymptotic efficiency [34], [48], [46], [39], both
notions are usually investigated using large deviations methods
[29].

The following definition gathers the basic concepts that are
useful in large deviation theory (see [29] for details).

Definition 1 (Definition of LDP): A rate function on a topo-
logical space F is a function I : E — [0, co] which is lower-
semicontinuous. It is said to be a good rate function if its level
sets {z : x € E,I(z) < a} are compact.

A sequence (Z™),,>1 of random elements in E is said to sat-
isfy the large deviations principle (LDP) with rate function I and
linear speed if the corresponding sequence (Pn)n21 of laws on
FE satisfies the following properties.

1) Upper bound: For any measurable closed subset C' of

1
limsup —log P, (C) < — 1221(37) (1)

n—oo

2) Lower bound: For any measurable open subset G of E

| .
hnnilorcl)f ” log P,(G) > ;relg I(x). 2)

Henceforth, if P and () are two probability distributions such
that the density of P with respect to @, dP/dQ is well defined,
the relative entropy K (Q | P) between P and Q) is defined as
the expected value under Q of the log-likelihood ratio log Q/ P:
K(Q | P) = EgllogdP/dQ] (see [20], [23], [29] for more
material on this notion).

In this paper, we will say that an LDP admits an information-
theoretical interpretation if, for any x € E such that I(z) < oo,
there exists a sequence (Q,, ) of probability distributions on £
such that

1)
lim LK (Qu | Pa) = 1(2).

2) The sequence of image probability distributions
(Qn o Zy)n, converges weakly to 0., the probability
mass function concentrated on .
The information-theoretical interpretation is often (but not al-
ways) at the core of Cramer’s change of measure argument. The
latter usually paves the way to the LDP lower bound (see [9],
[42] for exceptions).
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The Sanov theorem on the large deviations of the empirical
measure of an independently identically collected sample, is the
prototype of an LDP admitting an information-theoretical inter-
pretation. [29].

C. Previous Work

In most testing problems, provided there is a sufficient supply
of limit theorems for log-likelihood ratios, upper bounds on
error exponents can be obtained using an argument credited to
Stein (see [29] and Section III below). Henceforth, those upper
bounds will be called Stein upper bounds.

Checking whether the so-called Stein upper bounds may be
achieved or not is more difficult (this is also true for Bahadur
efficiencies, see [46, discussion p. 564]). In some simple but
nontrivial situations like product distributions on finite sets, the
Sanov theorem [29] allows to check the optimality of general-
ized likelihood ratio testing (GLRT) (see [21] and references
therein).

The possibility to check whether generalized likelihood ratio
testing achieves the Stein upper bound depends on the very
nature of the LDPs satisfied by the relevant log-likelihood pro-
cesses. The touchstone is whether the rate function of the LDP
admits a full information-theoretic interpretation (as defined
above) or not.

In the case of memoryless sources (see [21] and references
therein) and the case of Markov order estimation [31], the fun-
damental role of the information-theoretic interpretation of the
LDP rate function is hidden by type-theoretical arguments and
by the fact that the existence of a finite-dimensional sufficient
statistics makes the argument relatively straightforward. The
importance of the information-theoretic interpretation of the
LDP rate function (satisfied by the log-likelihood processes)
becomes obvious when dealing with hidden Markov models. In
the case of hidden Markov models on finite alphabets and finite
hidden state spaces, it took nearly ten years to check that the
nontrivial error exponents established in [43] actually match
the upper bounds derived from the Stein argument [33]. When
dealing with memoryless sources over general alphabets, not
all models may be considered as exponential models (multi-
nomial), and analyzing maximum-likelihood (ML) estimation
often has to rely on empirical processes techniques [47]. In
that case, under weak integrability constraints on the likelihood
process indexed by the models (weak Cramer conditions),
the rate function of the LDP satisfied by the log-likelihood
processes only admits partial information-theoretic interpreta-
tions (see [42]). Nevertheless, nontrivial error exponents are
established by resorting to those partial information-theoretic
representation properties of the LDP rate function [17] but the
achievability of the Stein upper bounds on error exponents is
still an open question.

D. Error Exponents for Stationary Gaussian Hypotheses
Testing

When dealing with AR order testing, variants of generalized
likelihood ratio testing may be investigated according to two
directions. The first one attempts to take advantage of the fact
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that, just like in the case of Markov chains over finite alphabets,
the parameters of the sampled AR processes remain identifiable
when model dimension is overestimated (see [15]). Moreover,
there exists consistent estimators such as the Yule—Walker
estimator that rely on finite-dimensional statistics for which
large deviations properties can be investigated (see [9] for
AR(1) processes).

The second line of investigation proceeds according to the
approach described in [33]: analyze the large-deviations prop-
erties of the log-likelihood processes indexed by the competing
models. We will see at the end of Section II that the two ap-
proaches may coincide. However, the ability to work with fi-
nite-dimensional (asymptotically consistent) statistics does not
provide us with a safeguard.

Whatever the approach, the main difficulty consists of coping
with the absence of an information-theoretic interpretation of
the large deviation rate functions. This difficulty is due to the
lack of steepness of the limiting logarithmic moment generating
function of the log-likelihood vectors (see again [16], [9], and
references therein for other examples of this phenomenon). De-
spite this impediment, we prove that when testing the order of
AR processes, a variant of GLRT achieves nontrivial underesti-
mation exponents. This result is obtained by showing that even
though the rate function governing the LDP of the log-likeli-
hood process does not enjoy a full information-theoretic repre-
sentation property, it does enjoy a partial information-theoretic
representation property. This pattern of proof should be put into
the perspective of [17].

E. Organization of the Paper

The paper is organized as follows. Some concepts pertaining
to the theory of Gaussian time series (like spectral density,
prediction error, Levinson—Durbin recursion) are introduced in
Section II. In Section III, limit theorems concerning log-likeli-
hood ratios between stationary Gaussian processes are recalled.
The interplay between prediction error and relative entropy
allows to characterize the information divergence rate between
an AR process of order exactly r and processes of lower order
in Theorem 2. At the end of Section III, the Stein argument
is carried out in order to check that there are no nontrivial
overestimation exponents in AR order testing, and to derive
nontrivial upper bounds on underestimation exponents. The
main results of this paper (nontriviality of underestimation ex-
ponents) are stated in Section IV. It is also checked that in some
nontrivial situations, the Stein upper bounds are achievable.
The rest of the paper is devoted to the proof of the main results.
LDPs for vectors of log-likelihoods are derived in Section V.
In Section VI, we try to overcome the fact that, unlike the
rate functions underlying the classical Sanov theorem [29], the
rate functions underlying the LDPs stated in Section V are not
known to be representable as information divergence rates. In
order to fill the gap, the rate function of the LDP exhibited
in Section V is (weakly) related to information divergence
rates through Corollary 2. This relationship is then exploited in
Section VII where the main result of the paper (Theorem 6) is
finally proved.

II. CONVENTIONS

Background, motivations, and a broader perspective on the
material gathered in this section can be found in [15] and [1].

As pointed out in the Introduction, a Gaussian AR process is
completely defined by the prediction filter and the variance of
the innovation process.

Henceforth, ®" denotes the (bounded) set of vectors a € R”
such that the polynomial z — 1+Y"'_, a;z" has no roots inside
the complex unit disc. The set AR (r) of AR processes of order
r may be parametrized by pairs (0,a) € Ry x ©". Note that
this is a full parametrization [10].

If (Y,,)nez is a stationary Gaussian process, then it is com-
pletely defined by its covariance sequence (y(k)), <7 defined as
(k) = E [Y;,Yn4x]. Under some mild summability conditions
(that are always satisfied by AR processes), the covariance se-
quence defines a function on the torus T = [0, 27] that captures
many of the information-theoretic properties of the process.

Definition 2: (SPECTRAL DENSITY) The covariance sequence
of a stationary Gaussian process is the Fourier series of the spec-
tral density f of the process

fw) = 3 Akyey Tk

kezZ
where w belongs to the torus T = [0, 27).

The spectral density of a stationary process is nonnegative on
the torus T. The spectral factorization theorem [15] asserts that
f is the spectral density of a regular stationary process if and
only if there exists a sequence (d,,) in I3(Z) such that

2

Z dne_‘/__1an
nez

flw) =

The function f is the spectral density of a regular AR process
of order r if and only if there exists an innovation variance o2,
and a prediction filter @ € R” such that

0.2

w) = -
1+ aem V7T

T 3)

Let M,. denote the set of spectral densities of the form of (3)
where @ € ©", and F,. its subset of spectral densities for which
o = 1. Note that a function f € M, belongs to F, if and only
if 5= [y log f = 0.

A function f on T defines a sequence of n x n Toeplitz ma-
trices (T (f)), ez

To(f)is 5] = % /T f(w)e‘/_—l(i_j)”dw, fori,j€{0,n—1}.

The function f is called the symbol of the Toeplitz ma-
trix. If f is the spectral density of some stationary process,
then 7, (f) is the covariance matrix of the random vector

In the sequel, if A denotes a matrix A" denotes the transposed
matrix.

The log-likelihood of a sequence of observations Y =
Y1,...,Y, (interpreted as a column-vector) with respect to

)
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the spectral density o2f where f € F, will be denoted by
gn (027 f7 Y)
1

b (07, £,¥) = = 5 o7 det(T, ()55 Y I ()Y

A theorem due to Szego (see [11]) asserts that as n tends to
infinity,

1 1

- log det(det(T,.(f))) — 5 ./T log f
which is null if f € F,.. Another theorem by Szegé motivates
the approximation of 7.71(f) by T, (%) The quasi-Whittle
criterion is now defined as

_ 1 1 n 1
2 _ = 2 _ | -
la (0%, 1Y) = =3 logo o A <f)Y.

The following test will be considered throughout the paper.

Definition 3: (PENALIZED WHITTLE ORDER TESTING) Let
pen(n,p) be a sequence indexed by N X N. Assume that
pen(n, p) is increasing with respect to the second variable. The
penalized Whittle order test ¢!">" accepts Hy () if and only if

sup {Zn(027 f7 Y) - pen(n,p)}
o,fE€EFy
is maximum for some p < 7. Let a}V""(+) be its level function
and 1 — BV () its power function.

At that point, it seems that we have to deal with Ry X ©" as
a parameter space. As R is not bounded, this does not seem
suitable for discretization of the parameter space. Fortunately,
the following proposition shows that as far as order testing is
concerned, we can disregard the variance of innovations o2 and
focus on the prediction filter a.

Proposition 1: (VARIANCE OF INNOVATION) The quasi-
Whittle criterion is maximized by choosing
Y'T,(1/f)Y
feF. n
the maximal value of the criterion equals
Y'T,(3)Y

1
—=log inf ———— —
2 fEF, n

ag

N | =

This prompts us to define modified criteria. In order to test
whether the observed process is of order exactly r or r — 1, we

will compare
1
inf Y'T, <?) Y.

1
inf Y‘LT,,, <—> Y and
fEF, f fEF.

Finally, we will repeatedly need to understand how an AR
process of order exactly r can be approximated by an AR
process of order at most » — 1. This will be facilitated by an
algorithm that has proved to be of fundamental importance in
AR modeling (see [15] for more details).

Definition 4: (INVERSE LEVINSON—DURBIN RECURSION)
Let (1,a) with @ € R" define the prediction filter of an AR
Gaussian process with innovation variance o2. Then, the inverse
Levinson—Durbin recursion defines the innovation variance o2
and the prediction filter (1,b) with b € R"~! of a regular AR
process of order » — 1 in the following way:

a; + QrQpry1—; .
bi:%;zz forie{l,...,r—1}
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2
12 g

:1+a%'

The Levinson—Durbin algorithm has not been designed in
order to solve information-theoretic problems but rather in order
to solve least-squares prediction problems (its range of applica-
tions goes far beyond Gaussian processes). But in the Gaussian
setting, least-squares prediction and information-theoretic is-
sues overlap. This will be illustrated in the following section.

III. INFORMATION DIVERGENCE RATES

Information divergence rates characterize the limiting be-
havior of log-likelihood ratio between process distributions. As
the AR processes under consideration in this paper are stationary
ergodic and even Markovian of some finite order, information
divergence rates between AR processes are characterized by
the Shannon-Breiman—McMillan theorem (see [20], [5], [25]).

Theorem 1: (SHANNON-BREIMAN—-MCMILLAN) If P and Q
denote the distribution of two stationary centered Gaussian se-
quences with bounded spectral densities g and f that remain
bounded away from 0, letting P™ and Q™ denote the image of P
and Q by the first » coordinate projections, then the information
divergence rate between P and Q, lim,, %K (P™ | Q™) exists and
is denoted by Ko (g | f) or Koo (P | Q). The following holds
P-almost surely and also in Ly (P):

1 dP{Y1.n}
logm — Koo(g] f)

The information divergence rate can be computed either from
the spectral densities or from the prediction errors

Koo(gf)

n

1 g g)
=— = —1-log= ) dX 4)
dr Jv <f f
1 o} Yo—Ef[Yy | Yoooima])®
:_{1og—§—1+[Eg (Yo—Ey| °|2 1)) H 5)
2 (o 0%
where 03 and a? represent the variance of innovations asso-

ciated with P and Q (logo} = 5= [, log fdw and log o} =
5 [7 log gdw).

Derivations of (4) can be found in [1], [25] or [15]. Equation
(5) follows from the definition of Gaussian conditional expec-
tations and from [5].

Equation (4) corresponds to the traditional description of the
information divergence rate between two stationary Gaussian
processes. Although it does not look as explicit, (5) emphasizes
the already mentioned interplay between least-squares predic-
tion and information. It will prove very useful when character-
izing the minimal information divergence rate between AR pro-
cesses of order 7 — 1 and an AR process of order exactly 7.

The following class of functions will show up several times
in the sequel.

Definition 5: (Definition of H) Let H denote the set of non-
negative self-conjugated polynomials i on the torus T that is of
the form

P P
h(w)=ag —I—Z a; (e_‘/__li“ +e‘/__1i“’) =ag —I—QZ a; cos(iw)
i=1

i=1
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for real numbers ag, ay, . . ., a, such that

p
agp + 2 Z a; cos(iw) > 0,

=1

for all w.

Notice that if A € H has degree p, then it may be written as
the square of the modulus of a polynomial of degree p on the
torus, that is, there exist real numbers b, b1, . . ., b, such that

2

h(w) =

p
bO + Z bie—\/—_liw
i=1

Indeed, £ is a spectral density associated with a covariance se-
quence (y(k))x which s zero for |k| > p, that is, the covariance
sequence of a moving-average process of order p. It is also the
inverse of the spectral density of an AR process.

Corollary 1: Let g denote the spectral density of a stationary
regular Gaussian process. If 1/f € ‘H and Koo (f | g) < o0
then f defines a stable AR process.

The next theorem identifies the minimal information diver-
gence rate between g € M,. and spectral densities from M,._1.
The pivotal role of that kind of result in the analysis of com-
posite hypothesis testing procedures is outlined in [41], [21].
Theorem 2 is an analog of similar theorems from [41], [43], or
Lemmas 6 and 7 from [33] (see also [14]). But, thanks to the
special relationship between log likelihood and prediction error
in the Gaussian setting, Theorem 2 provides the exact value of
the infimum and the precise point where it is achieved in param-
eter space.

Theorem 2: (I-PROJECTION ON LOWER ORDER AR
PROCESSES) If P is the distribution of a regular AR process of
order exactly r with spectral density g, prediction filter @ and
innovation variance o2, then

inf

1
Ko = Zlog (1+ a,2).
o (flg) 20g( + a,”)

The infimum is achieved by a stable AR process of order » — 1
for which the prediction filter and variance of innovations are
obtained by the inverse Levinson—Durbin recursion.

Henceforth, we will overload the classical notations: the spec-
tral density of the AR process of order r — 1 that realizes the in-
fimum in inf e pq, | Koo(f | g) will be called the I-projection
of g on the set M,._y, it will be denoted by f(g).

Proof: Any spectral density of stable AR process r — 1

may be defined by a prediction filter b € ©"~! and an innova-
tion variance o2

inf Ko
ot (fl9)
. 1 o2
=it [?Ef [10% o
2
+ (YO - [Eg[YO | ono:fl]) _ 1]]
o2

(X0 = ZiZi s = a)V—i + 0, Y-, )

)

Note that

r—1 2
Es,o" <Z (i — ai) — Wy, _ Y_,,>

i=1 T

r—1 2
(bi — ai)
= Eb,o” <Z TY—T-l-(r—i) -Y_,

i=1
cannot be smaller than the backward one-step prediction error of
order r — 1 of the process defined by f. The latter is the one-step
prediction error of the stationary process obtained by time-re-
versing the process (Y5,),,cn- As the time-reversed process has
the same covariance structure, it also has the same spectral den-
sity as the initial process. Hence, backward one-step prediction
error of order r — 1 equals o2
This lower bound is achieved if the filter

([(bi = ai)l far)icy s

coincides with the backward prediction filter associated with the
spectral density f. The coefficients of the backward prediction
filter coincide with the coefficients of the forward prediction

filter. Hence, the lower bound is achieved if and only if
b, — a; = a,b._;, forall 7,1 <i<r

that, is for the result of the inverse Levinson recursion. Hence,
the infimum is achieved by choosing

2 — g
1+ a2
and it equals
1 2
3 log (1 + aT) . O

A similar theorem characterizes the information divergence
rate between g and M,._1.

Theorem 3: (LOWER ORDER AR PROCESSES) Let g denote
the spectral density of a regular Gaussian AR process of order
r. Then

1
inf Ko(gl|f)= —3 log (1 — a?)
and the infimum is achieved by the spectral density defined
which is defined by the prediction filter resulting from the in-
verse Levinson—-Durbin recursion and with variance of innova-
tions equal to the forward-error prediction of this last prediction
filter.

The proof of Theorem 3 parallels the proof of Theorem 2 and
is omitted.
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The following theorems provide upper bounds on achievable
error exponents. Their proofs are similar to the proof of Stein’s
lemma concerning the efficiency of likelihood ratio testing for
simple hypotheses (see [29]). For the sake of completeness, it is
included in the Appendix.

Theorem 4: (TRIVIALITY OF OVERESTIMATION EXPONENT)
Let o (-) denote the level function of a sequence ¢ of tests
of Hy(r) against Hy(r). If the asymptotic power function is
everywhere positive in M., then for any AR process of order
r — 1 and distribution P

1
lim —loga, (P)=0.
Jim —log oy, (P)

The next theorem provides a challenging statement and will

motivate the rest of the paper.

Theorem 5: (STEIN UNDERESTIMATION EXPONENT) Let
al () denote the level function of a sequence ¢}, of tests of
Hy(r) against Hy(r). Let (1 — 3% (-)),, denote its power func-
tion. If the asymptotic level function is everywhere bounded
away from 1 in M,._1, then for any AR process of order exactly
r, distribution P and spectral density g € M,

f Koo(flg)-

1
liminf —log B7(P) > — i
imin - og B (P) > fei\rfllr_l

n—-+4oo

Remark: It should be noted that thanks to Theorem 2, the

Stein underestimation exponent is nontrivial and that it does not
depend on the variance of innovations % fT gdw.

Remark: Theorem 5 helps us in understanding the differ-
ence between error exponents as used in information theory and
Bahadur efficiencies used in mathematical statistics. Bahadur
efficiency is best defined by considering tests that reject say M,
for large values of some statistic T;,. Assume P € M; \ Mo,
and assume that on some sample y1, . . . , ¥, collected according
to P, T (y1,.-.,yn) = t. Define the “level attained” as

L,= sup P{T, >t}.
PleMg
The Bahadur slope at P (if it exists) is defined as the P-almost
sure limit of —2n~! log L,,. If the tests consist of comparing the
logarithm of the ratio of the maximum likelihoods in models
My and M with thresholds, then P-almost surely, 7, con-
verges to inf pre v, Koo (P | P7).

The distinction between error exponents and Bahadur slopes

is exemplified by the fact that the quantity

inf Ko (P]|P)

PeM,_1
that shows up in Theorem 3 coincides with the Stein upper-
bound on the Bahadur slope of GLRT at P € M; (see [46,

Theorem 8.2.9] and [48, Theorem 16.12]).

In [46], Taniguchi and Kakizawa characterize the Bahadur
slopes of some testing procedures among stationary Gaussian
processes. Their results (Theorems 8.2.14, 8.2.15, 8.2.16) con-
cern models indexed by compact intervals on R and do not seem
to be easily extensible to the order testing problem considered
here.

Although the techniques used in this paper do not allow us to
prove that the Stein underestimation exponents are everywhere
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achievable, it is worth mentioning that for the order testing pro-
cedures under consideration, the underestimation exponents do
not depend on the variance of innovations.

Proposition 2: (SCALE-INVARIANCE OF EXPONENTS) Let
a € "\ ©"~1! denote a prediction filter of order exactly . For
all o > 0, let P, denote the probability distribution of an AR
process of order r parametrized by (o, a).

If, for any integer p, pen(n,p)/n tends to 0 as n tends to
infinity, the underestimation exponent of the penalized Whittle
tests does not depend on the variance of innovations

1 1 ;
limsup — log A" (P,). = limsup — log 81" (P).
n n

n—+o0o n—-+4oo

The proof of this proposition is given in the Appendix .

At this point, it is relevant to provide an alternative view at the
quasi-Whittle criterion. Minimizing Y17, (1/ /)Y over f € F,
turns out to be equivalent to minimizing the forward prediction
error

t=1 =1

with respect to @ € O, assuming that Y; = 0 for all ¢ < 0.
The solution of the latter problem is known as the Yule—Walker
estimate of the prediction filter of order r on the sample Y
(see [15]). It can be computed efficiently thanks to the (direct)
Levinson—Durbin algorithm. Moreover, if a, denotes the rth
coefficient of the prediction filter of order r output by the
Levinson-Durbin algorithm on the data Y, an interesting
aspect of the analysis of the Levinson—Durbin algorithm is the
following relation:

infrer, YT, (1) Y
infrer YT, (;) Y

Hence, comparing of Whittle approximations of log likelihoods
boils down to comparing the absolute value of the rth reflec-
tion coefficient a,., with a threshold. This is all the more inter-
esting as the first r reflection coefficients only depend on the
first 7 + 1 empirical correlations Zfﬂ . Y.Y,:_;, that is, on a
finite-dimensional statistic.

However, the possibility to approximate GLRT while relying
on finite-dimensional statistics does not seem to be of great help
as far as investigating error exponents is concerned (see [30] for
more background on the interplay between the availability of
finite-dimensional sufficient statistics and error exponents).

2

e

=1l-a

IV. MAIN THEOREMS

From now on, P is the distribution of an AR Gaussian process
of order exactly r, and spectral density g € F,.. Our goal is to
prove that at least

1 -
limsup — log %" (P) > 0
n—oo N

and whenever possible that limsup,,_, . 2 log 8}""(P) can be
compared with some information-theoretic quantities.
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Recall that f(g) denotes the spectral density of the I-projec-
tion of g on the set M,._; of spectral densities of AR processes
of order r — 1.

The following subset of M, shows up in the analysis of the
underestimation exponent at g.

Definition 6: Let F(g) be defined as the subset of spectral
densities f of AR(r) processes such that for all n sufficiently
large

To (1)) + T, " (9) — Tn (1/9)

is positive definite.

As T (g) — T, (1/g) is nonpositive (see Proposition 5),
F(g) defines a nontrivial subset of M,.. In some special cases
the triviality or nontriviality of F'(g) may be checked thor-
oughly. For example, if g is the spectral density of an AR(1)
process, then f(g) is the spectral density of an AR(0), and com-
putations relying on Lemma 4, allow to check that f(g) € F.
As soon as we deal with processes of order 2, things get more
complicated, as demonstrated by the following proposition.

Proposition 3: Let g be the spectral density of an AR process
of order 2, with prediction filter (a;, az). Then

f(9) € Fg) <= (1+a3)" > ai (1+a3).

The proof of Proposition 3 is given in the Appendix .

In the sequel, as g remains a fixed element of F,., we will
often omit to make the dependence on ¢ explicit, and abbreviate
F(g)as F.

The main result of this paper is the following Theorem.

Theorem 6: (UNDERESTIMATION EXPONENT) Let g denote

the spectral density of an AR process of order exactly  and let
F(g) be defined as above. Let L(g) be defined by

L) =, Juf 1K(flg)—, Inf Keo(f[h)].
The following conditions hold.

a) L(g) > 0.

b) If, for any integer p, pen(n,p) tends to 0 as n tends to
infinity, penalized Whittle tests have nontrivial underesti-
mation exponents

lim sup 1 log BY""(P) < —L(g).

n—+oo T

The quantity L(g) may or may not coincide with the Stein un-

derestimation exponent described in Theorem 5. For example,
elementary computations reveal that L(g) coincides with the
Stein upper bound when g is an AR(1) process. Note that, using
the connection between the Whittle test and tests concerning
the Yule—Walker estimate pointed out after Proposition 2, and
building on results from [9], it is possible to check directly that
the Whittle test for AR(1) processes achieves the Stein under-
exponent.

V. LDP FOR VECTORS OF QUADRATIC FORMS

In this section, f1, ..., fq denote a collection of spectral den-

sities of stable AR(r) processes (f; € M.,.). This collection
defines a vector of quadratic forms (YTTn(l [1i)Y )i=1.4.

The basic concepts of large deviation theory were recalled in
the Introduction (see Section I-B).

Our goal is to prove an LDP upper bound for the tuple of
quadratic forms (Y"1, (1/f;)Y)i=1.4. when the time series
Y1,...,Y,,... is distributed as an AR(r) process with spec-
tral density g. As underestimation events correspond to large
deviations of the log-likelihood process indexed by F,. (this
qualitative statement will be turned into a formal one thanks
to Definition 12 in Section VIII) we aim at identifying the
underestimation exponents with the value of the rate function,
or rather with a limit of values of the rate function evaluated at
some well-chosen points. This goal will be achieved through
Lemma 9.

The search for LDP for Toeplitz quadratic forms of Gaussian
sequences has received deserved attention during the last 15
years (see [2], [4], [28], [16], [9], [32] and early references in
[18], [19], [13], [12]). Those papers, except [32], describe the
large deviations of a single quadratic form while just assuming
that the underlying time series is a regular stationary Gaussian
process. The results described in those references need to be
completed to fit our purposes.

The basic scheme of analysis in those papers remains quite
stable: the logarithmic moment-generating function of the
quadratic form is related to the spectrum of a product of
Toeplitz matrices. The limiting behavior of the spectrum is
characterized using the asymptotic theory of Toeplitz matrices
developed by Szegd and Widom (see [11] for a modern ac-
count). The main difficulty lies in the fact that understanding
the limiting behavior of the spectrum of the Toeplitz matrices
is not enough.

Definition 7: A, is the logarithmic moment generating func-
tion of (Y17, (+)Y,....Y'T,(£)Y).

For any A € R?

d
1
An(A) = logE \YTT, <—>Y :
For any A € RY, A(X)
A(X) = limsup lAn (A).

n——+oo N
The function I is the Fenchel-Legendre transform of A: for any
y € R?

I(y) = sup ((Ay) —A(N)).

AR

_ Definition 8: A pointy € R? is said to be an exposed point of
I with exposing hyperplane A € R? if and only if for all ' € R?

Iy)> 1)+ Ay —9).
Note that by the very definition of convexity, the existence of a
vector A that satisfies I(y') > I(y)+ (X, 3 —y) can be taken for
granted. The strict inequality makes the definition interesting.
Note that as a point-wise limit of convex lower-semicontinuous
functions, A, is convex and lower-semicontinuous.

Theorem 7: Let f1,..., fq denote a collection of spectral
densities of stable AR(r) processes.
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a) The sequence of tuples of quadratic forms
1
= (Y'T.(1/£)Y)
n

satisfies an LDP upper bound with good rate function I.

b) The sequence of quadratic forms satisfies an LDP lower

bound with rate function /(y) if y is an exposed point of 1
with exposing hyperplane A such that lim,, £ A, (X) exists
and is finite, and infinity otherwise.

This theorem is a direct application of Baldi’s generalization
of the Girtner—Ellis theorem (see [29, Ch. 4, Sec. 5]). As stated,
it is of little utility since we know next to nothing about A. In
the next section, we will check that I is nontrivial and that the
set of exposed points is nonempty.

i=1,d

VI. REPRESENTATION FORMULAS OF RATE FUNCTION

This section unveils the structure of A and I. It prepares the
derivation of the partial information-theoretic interpretation of
the LDP upper bound stated in Theorem 7. Lemma 1 provides a
characterization of A(A) when it is finite. This characterization
only depends on the spectral densities ( fl-)izl,d and g, through
the convex function A defined in Definition 9. The Fenchel-
Legendre transform () of this function A(-) is a leverage in
the analysis of the rate function . As a matter of fact, for any
z € R?, such that I(z) < oo, I(z) may be identified as an
information divergence rate between a carefully chosen AR(r)
process and the process with spectral density g (see Lemma
2). Lemma 3 states that the supremum in the definition of I is
achieved whenever () is finite. Moreover, an important conse-
quence of Lemmas 2 and 3 is that although they differ, I(-) and
I(-) have the same effective domain (Corollary 2).

Definition 9: (DEFINITION OF A) For A € R?, let

e log <1—2gz fz) dw.

The function A is strictly convex, lower-semicontinuous on

A =

i, .
Dy = {)\ 1 - 292 7 is nonnegative on T}

and finite on A’s in Dy such that 1/g — 2>, A;/ f; is not the
null function. This follows from the fact that for such X’s, 1/g —
23", i/ fi belongs to the set H (see Definition 5), has isolated
zeros, and log w is integrable at 0.

Lemma 1: (CHARACTERIZATION OF A) A coincides with A
on the set Dy where it is finite. Moreover, if for any A in Dj,
fa is defined as a function on T by

1/fa(w) =1/g(w QZfL

then A € Dy if and only if fy € F(g).
Recall that F'(g) is defined at the beginning of Section IV.
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Proof: From a well-known elementary result (the Cochran
theorem, see [16, Lemma 1]), it follows that for any integer n
and any A € R? we get the expression at the bottom of the page.

Now
d s
I, = 2T, (9)T, (Z 7)
i=1 7"

s () 0 ()

As T, (g) is definite positive for all n, if f\ & F,
1
lim sup —A, () = oo.
n n

On the other hand, if f\, € F, we may use the following
factorization:

= (i%)

=Tu(

<z +1;
The limits of
! logdet(T,,(g)) and ! logdet | T, !
om g n\g m g an\

are readily identified as

——/loggdw and ——/log—dw

thanks to Szegd’s limit theorem (see [11, Theorem 5.2, p. 124]).

As
= ——/ 10g—dw

it remains to check that
1 1
hm logdet ( +T,; < ) (T_l (9)—Tn <—>>> =0.
I g
Recall that Tn(g) — T 1(g) is the sum of two matrices of
rank 7, that it is nonnegative, and that the sum of its eigen-
values is upper-bounded by 2r(1+ " =1 ]) where a € O is

the prediction filter associated with g (see Proposition 5 in the
Appendix). This proves that

S (-1 (1))

has at most 27 nonnull (actually negative but larger than —1)
eigenvalues, and their sum is uniformly lower-bounded. This is
enough to prove that

o o ()

is smaller than 1 but remains bounded away from 0 and that the
desired limit is actually null. O

e

— 3 log det (In — 2T (9) T, (
+00,

Ap(A) =

K2

7))

if T, (g) — T, (%) + T, (1/fx) is definite positive

otherwise.
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Definition 10: Let I be the Fenchel-Legendre transform of
A: for any y € R?

I@zﬁymm

—A(N).

Lemma 2: (REPRESENTATION FORMULA FOR I)
a) Forally € R?

I(y):fier}éu{ o (fl9):yi= / dw forallz}

where the right-hand is infinite when the 1nﬁmum is taken
over the empty set.

b) When I(y) is finite, the infimum is attained at some fy
and this f) is the spectral density of an AR(r) process

d
11 \i
—=—--2) — (6)
oy ; fi
for some A € D3 such that
I(y) = A y) — AN

The proof of Lemma 2, consists of checking that the convex
function A is essentially smooth according to [29, Defini-
tion 2.3.5].

Proof: (Lemma 2) Let us first check that if (A™), y isa
sequence of vectors from DY that converges to A € Dy \ DR,
then ([[7A (A™)|),nen converges to infinity.

For any A™ € DY, by Lebesgue differentiation theorem

1 .
Diham = o ——#ﬁ——m
™ JT m
1—-2g Zl/\j /1
j=

and the following polynomial:

—1 -2 Z YR
7j=1
is positive everywhere on T.

Now, as A € Dy \ D3, we have 1_ 22?21 Aj/f; > 0on
T. Either the polynomial % — 2Zj:1 Aj/fi =0onT,orit
vanishes on at least one and at most finitely many points on T.
Hence, in all cases

1 / 9l L
2 JT d
1=29 32 Ai/fi
j=1
By Fatou’s lemma
9/fi

1
liminf 0; Ajxm > oy / lim inf i
m ™)t ™ 1—2921-:1)\?‘/]%'
1 i
= —/ g/df dw
2m T1-— 2;}2]-:1 )\j/fj
Thus, (8,L-A‘Am)m€N tends to infinity for each i € {1,...,d}.

Let y be such that I(y) < oo. Let us now show that there
exists some A such that

1(y) = Ay) —A Q).
n Where A € Dg, such that
—A(A™).

There exists a sequence (A™),

I(y) = lim(A™, y)

If the sequence (A™), . is bounded, it has an accumulation point
A in D, since Dy is closed (see Definition 9). Then by lower-
semicontinuity of A

I(y) = (\y)

Moreover, A € DY and

—A(N).

y=vVAa.

Let us check now that (A™),  is indeed bounded. Assume the
contrary for a while. If the sequence (A™), . is not bounded,
then the sequence (A™/ ||A™]|),, has an accumulation point 7
on the unit sphere of RY. For each m such that [|A™] > 1,
A" /||A™|| € D{ since 0 € D3 . Hence, we may assume that
n c Da.

For every w € T, 2g(w) Z?:l 7:;/fi(w) <0

The subsequence ((A™,y) — A (A™)),, is equivalent to
(3 (IA™]] (m, ) —log |A™[])), . Hence, this subsequence
converges to oo, which contradicts the assumption I(y) < oo.

Hence, for any y € R<, such that T (y) < +oo, there exists
some A € DS such that

Iy) = Ay) —AA) .
From the very definition of I and A, for every X’ € Dy
AN) = A+ (X = A y)
which entails y = VA (A). Now define fy using (6), then

e M,«, foreachi € {1,...,d}, yi = 5 [y fa/fidw, and
I(y) = K (fx | 9)- This proves that if I(y) < oo, then

I(y)zfier}\ﬂr{K”(fM): yi:%/Tﬁdwforalli}.

We will now check that if the set f,f € M, with
= = fT dw, for i < d, is nonempty, then I(y) is
upper-bounded by information-divergence rates between g and

elements of this set.
Let f € M, be such that for all i € {1,...
5= fT L dw, then for any A € D,f

Ko (f19) = Ay +A(A)

1 1 4N
L)

1 LI
—1—1log (f <§_2;E>>> dw

>0.

7d}’ Yi =

This proves that

I(y)< inf i:— —d for all .
(y)_fé%,{ ~(flg): vy / w for a z}

O
Lemma 3: (REPRESENTATION FORMULA FOR I) For any
y € R, if I(y) < oo, there exists A € Dj such that
I(y) = (Ay) — AN).
Corollary 2: For any y € R?, I(y) < oo if and only if
I(y) < oo.
Proof: A > A,sothat I < I.This proves thatif I(y) < oo
then I(y) < oo.
If now I(y) = +oo, there exists a sequence A in DY such
that (A, y) — A(A™) tends to infinity. Since A is either contin-
uous and finite on the boundary of Dy, or tends to —oo on this
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boundary, || A™ || tends to infinity. Now, let u be an accumula-
tion point of A" /||A™||. For any m, any w € T

1 oam
DRIk

so that, since || A™ || tends to infinity and all f; are positive

d m
u;
Z;M@_

But by Lemma 1, this implies that w € Dj, and also that for any
positive M, M € Dj. Now, as m tends to infinity

AQA™) ~ =1/2log || A™ ||

so that (A™,y) > 0 for large enough n, leading to (u,y) > 0.
This implies that, for large enough M

(Mu,y) - A(Mu) >  log M

w|>—~

so that I(y) = +oo. O

VII. TooLs

When I(-) and I(-) do not coincide, it is not possible to get a
full analog of Lemma 2, that is, to identify 7() with an informa-
tion divergence rate between an AR process and the AR process
defined by g; nevertheless, thanks to Lemma 2 and 3, it is pos-
sible to get a partial information-theoretic interpretation of I(-).

Lemma 4 Let y denote an element of D; C R<, let X be

defined by 7 (y) = (A,y) — A(X), and Ay be defined as the
solution of T (y) (Ay;y) —A(Ay). Forany A, let fy be defined
by
11 &N
I
Then
I(y) =1(y) - K (fa, | f3)
=Ko (fa, 19) — Ko (fa, | 3)
=K (fx, 9) - lnf Koo (fa, | Fr) -

The corrective term infaep; Koo ( fx, | fr) is the price to be
paid for the lack of steepness of A.

Proof: We first check that I (y) = K (f)‘y | g) -
Koo (f)\y | ff\)
(f,\ | ) - (fx |f;\)

= ) — 0 g w
_;A i+ 5 lngd

) 4N
:<A,y>+4—/10g(1—2ggz> dw
=\y)—A(X)
=1(y)
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Now, for any A € Dy, (A,y) — A (A) < I (y). But again
Ay —AXN) =K (i, 19) — Ko (i, | 2)

leading to Koo (fa, | /2) = Koo (i, | f3)- u

Remark: If d =2, fi = g, and Ay = —)\; with A\; < 0, the
quadratic form under consideration is the stochastic part of the
quasi-log-likelihood ratio between f, and g. The LDP satisfied
by this log-likelihood ratio is well-understood thanks to Propo-
sition 7 in [9] and Proposition 5.1 in [8]. It actually admits an
information-theoretic representation property.

Lemma 5: Let y denote an element of D; C R¢, let X be
such that I (y) = (A, y) — A(X), let g be such that I (y) =
Ag) - A then

I(y)>1(y) .

Proof: From the definitions of X and 9, it follows that

<X7y - @)

I(y)-1(y) >

For any A, we have

A y) = AN < (A y) -
Now forany e € [0, 1], (1—€)A

to Dg. Substituting (1 — ¢)A fo
and rearranging leads to

(A((1=e)X) - A
Letting € tend to 0, and recalling that VA(X) = y
A7) <(\y). O

The following lemma relates the shape of D, and the shape
of Dj (clause a) of the Lemma), as a byproduct, we also get a
relation between [(y) and a relative entropy with respect to g.

A(N).
€ D3, since both 0 and Abelong
or A in the preceding inequality,

a | o=

Lemma 6: Let p be defined as
min g(w)/(2 max g (w)).
weT weT

Let (hi);_; . denote a sequence of functions from H. Let [
and T denote the rate functions associated with the sequence
(hi);—1 4- Let y denote and element of Dy C Re. Let A € Dy
satisfy I (y) = (A,y) — A(X). Let fx be defined by

d
1 1
—=—-=2 E /\th
o9 =

Then the followings hold:
a) pA € Dy; B
b) pKeo (falg) < I(y).
Proof: Let p be such that 0 < p < 1 and pA € Dj. Note
that

1w 1o
qu_f)‘—i_ g
(fal)

(1-pmKe (frlg)-

Then by the convexity of K
(f A | f HA)
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Now, let p be defined as in the statement of the lemma. Then,
for all tuples of functions h; from H asA € Dy, forallw e T

>
o q( ) 2ZA hi(

which entails
d

-2 h; > —1 .
P E_l Aih; > /m%xg(w)
Hence, the largest eigenvalue of

d
Tn (2p Z )\Lhz>
i=1

is larger than —1/ maxy g(w), while the smallest eigenvalue of
T ' (g) is not smaller than 1/ maxt g(w). This finally entails

n

that for all n

I (ZpZ“> ()t 0 (5)

is definite positive, which implies that f,5 € F.
Then

oo (I 19) = Koo (fa | for)

by Lemma 4. O

The following partial information-theoretic interpretation of
I is now an easy consequence of Lemmas 2 and 4.

Lemma 7: Let y belong to Dy, let f, be defined as the spec-
tral density that minimizes K (- | g) among the solutions of

h

Y;
T fi

then
I(y) <

Proof: From the representation formula for 7(). d

Ko (fy lg) — ﬁggKoo (fy | h) .

VIII. UNDERESTIMATION EXPONENTS

Throughout this section, g denotes the spectral density of the
AR process of order » > 0 that generates the observations.
Henceforth, K, (M,_1 | g) denotes the minimum information
divergence rate between AR-processes of order r—1 and the AR
process with density g (Koo (M,_1 | g) is the Stein underesti-
mation exponent associated with g, see Theorem 5).

Sieve approximations allow to handle the large deviations of
the log-likelihood processes indexed by J,, or equivalently by
OP using the LDPs for vectors of quadratic forms exhibited in
Section V. Thanks to the sieve approximation lemma (Lemma
8) and to the LDP upper bound for vectors of quadratic forms
(Theorem 7), Lemma 3 provides a lower bound on order under-
estimation exponent. This lower bound is defined as a limit of
infima of large deviation rate functions. Such a definition does
not preclude the triviality of the lower bound. The remainder of

this section is devoted to the identification of this limit with the
expression given in the statement of Theorem 6 (Lemma 11) and
to checking that the latter expression is nontrivial (Lemma 12).

Definition 11: (SIEVE) For any integer p, any positive a, an
a-sieve for the set F,, of spectral densities of stable AR(p)-pro-
cesses with innovation variance equal to 1 is a finite subset
N (a) of F,, such that for any f € F,,, there exists f € N («)
such that

lay—a; [2<

where ay (resp., a }) is the prediction filter associated with f in
OP (resp., f in 7).

Upper bounds on the size of a-sieves for F,, or ©F can be
checked by the following argument. If @ € ©P, then the complex
polynomial 1+>"% | a;z" has no roots inside the open complex
unit disc. Let us denote by (z;)%_, its p complex roots

1+Zazz —H 1—2/z).

=1
This implies that for all i € {1,...,p}, |a;] < (). Hence, we
get the following rough upper bound on the minimal cardinality
of an a-sieve for OF:

(R =(5)

Henceforth, N (a) denotes the index set the sieve N'(«); by def-
inition, we have
N(Oé) = {fi; fieFri GN(a)} .
In the sequel, .J(-) is the rate function for the LDP satisfied by
(5 2721 Y7), eny When Yy is generated by a Gaussian AR(r)
process with spectral density g (we refer to [16] for a full presen-

tation of this LDP and to the Appendix for an explicit definition
of J(-)).

Lemma 8: (SIEVE APPROXIMATION) For each a > 0, let
N(a) denote an a-sieve for F, according to Definition 11.
N () denotes the index set for N'(«)

N(a)={fi: fi € Fp,i € N(a)} .
For any positive M, any integer p, for any ¢ > 0,if « > 0
satisfies

e>a(2r+1)2 Mg (M)

we have the equation at the botton of the page, where N («)
denotes the index sets for a-sieves of F,.

The proof of the sieve approximation lemma is given in the
Appendix (Part C). The next definition is concerned with the
sets of values for vectors of quadratic forms indexed by sieves
for F,. that correspond to order underestimation events.

Definition 12: For any o > 0, let N(«) and N’(«) denote,
respectively, the index sets of a-sieves of F,._1 and F,.. The set

lim sup —

n—-+4oo

logP sup inf
<fe}' iEN(a) |1

ORI RS,
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C,, is the closed set of real vectors indexed by N(a) x N'(«)
defined by

Ca:{y:

and y® is an element of C,, that minimizes |

inf yZ <a(2r+1)27tigt

Ko (M
€N (a) ( (

r-119))

+e® x inf ;
JEN'(a) yj}

y* such that I (y*) = inf I(y) .

y€eCa
Notations I and I have been intentionally overloaded. For
every index set N(a) x N’(«a), they denote specific rate
functions.
The existence of y* is ensured by the fact that I is lower-
semicontinuous and C\, is closed.

Lemma 9: For each positive a, let y* be defined according
to Definition 12, then

hmsup—log[j’wr( )< —lim I (y%).
n—-+4oco a\0

Proof: (Proof of Lemma 9)

sup {ln(0?, 1Y)
o,feF,

BT (P) <P (327 <r: — pen(n,p)}

> sup {l,(0% 1Y)

o, fEF: - pen(n,r)})
=P <3p <r: fienfp {%Y*Tn G) Y}
(7))

exp 2(pen(n.p) — penn, )] ).

< inf

The second step follows from Proposition 1. Let € be defined as
a(2r+1)2"T1J "N (Ko (M,—1 | g)). Forany a > 0, for large
enough n, pen(n,p) — pen(n,r) < a.

: Cinf d iyt (L
P <E|p<r : flean‘p {nY T, <f>Y}
< it {lyvin, (1)y
in — =
< jnf 3% 7 exp «a
:P< inf { ~Y'T, <1>Y}
feF._1 (N
< mf{ ~Y'T, < ) } XpOé)
feF.
LGN(a)
< e+ inf { YTT <l> Y}expa)
1EN'(a) fz
+ P | sup inf
feF,. i€N(a)

[ ()2 ()]r)

BlT(P) <
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The first summand on the right-hand side is handled using the
large deviations theorem (Theorem 7), while the second sum-
mand is handled using the sieve approximation lemma (Lemma
8). Altogether this implies

lim sup— log BME(P)

n—-4oo 1

lim sup —

n—+oco N

Smax{— inf I(y);
yeCa

lo Pl su inf
& (fe]I:) 1EN ()

)
K (Mo |0}

But Theorem 5 (Stein upper bound) imply that for small
enough o

Y [T () - T () Y

< max {— inf I(y);

yeCq

max {— inf I(y);

yeCq

KMot l0)f = - juf T

yeC,
and the lemma follows by letting « tend to O. O

The next corollary follows from Theorem 5 (Stein upper
bound) and Lemma 9.

Corollary 3: Let y© be defined according to Definition 12,
then
lim I (y*) < inf K )
Im T(y*) < inf Keo(f]9)
Lemma 10: Let y® be defined according to Definition 12, let
A% € Dy be such that
I(y") = (" A% - A7) .
Let o be the innovation variance of (fx« ), and a® its predic-
tion filter in ©". For any accumulation point (&, a) € (0, 00) X
07, then 0 < & < oo, and if f is the spectral density with inno-
vation variance ¢ and prediction filter a, then f is the spectral
density of a stable AR(r) process.
Proof: (Proof of Lemma 10) Let p =
Lemma 6, it follows that for any «

Koo (a1 9) < T(y).
But taking a to 0 and applying Corollary 3 leads to the fact that
o cannot be 0 or 400, so that one obtains

Ko (f19) <5 min Ku(f19).

r—1

minT g
2maxT g’

; from

This implies that f defines a stable AR(r) process. O

Combining the next lemma with Lemma 3 proves Part b) of
Theorem 6.

Lemma 11: Let y® be defined according to Definition 12,
then
lim I (y®) > inf K — inf K h
Jim, (") > ot (f 19) = inf Koo (f [ h)
Proof: (Proof of Lemma 11) According to Lemma 4, there
exists A* € D, such that fy« is the spectral density of an AR(r)
process satisfying

14") = Koo (B | 9) = inf Koo (e | f3)
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and
o = 1 [ S
g1 omr T fi ’
which, since y* € C,, and all f;’s verify fT log f; = 0, leads

to
. 1 fae fre
m?(%/T fi><e X%l}l(zyr/ f1>' @)

Let 7, a, f be defined as in the statement of Lemma 10. There
exists m > 0 and M such that, for small enough «, we have
m < fae < M on T, which, together with (7) leads to

N O VA U o |
f£ﬁ<%ﬂ?>fﬁéeaﬂﬂ

and then to
Ko (F19) 5 i Ko (F17):

This implies, by Theorem 3, that f is the spectral density of a
stable AR(r — 1) process.

The Lemma will thus be proved as soon as the following is
established:

lim 7 (y*) >
Jim 1(y*) 2

forie ITU.J

Koo (f19) = it Koo (F10). ®
Define F, as the set of spectral densities

=

g
1= 2530 Xg/ f;
with A € Dy (the dimension of A’s depends on the size of the
sieve A (), but for any «, F,, is a subset of F'). Then for any
h € F,

I(y*) 2 Koo (fae | 9) = Koo (fae | 1) -

Without loss of generality, we may assume that the sieves ()
are nested (o > o implies N'(a)) C N(')). Hence, for any o/,

for any h € F,
Koo (F19) =K (F10).

lim I (y®) >

Jim, (y*) >
But for any A in F', with associated innovation variance 0'}2L and
prediction filter @y, there exists some ¢ € N(«) such that h, €
F, has innovation variance 0,2L and prediction filter @; such that

|| @an — a; ||< a, so that
lim Ko (f|ha) - Ko (f|h).

Thus, for any h € F, one has

lim T(4”) > Koo (£119) = K (F11)
which leads to (8). O
Part a) of Theorem 6 follows from the next lemma.
Lemma  12: (NONTRIVIALITY OF UNDERESTIMATION
EXPONENT)
inf  |K. —inf K
it K (19 = jnf Koo (7 1) >0

Proof: (Proof of Lemma 12) Let h be the spectral den-
sity of a stable AR(r) process. For any real a such that a >
—inft h/supy g, define h, by

1 1 a

he g W

Thus, h, is positive on T and is the spectral density of an AR(r)
process. Moreover, the smallest eigenvalue of

1 1
T, <—> +171(9) — T <—) =a+T;"(9)
hq g
is positive, so that h, € F'. One has
K (1) = ol Ko (7110

> inf [K.
_felﬁgr_l[ (f

inf
fEM1

| 9)

and the infimum on the right-hand side is attained. Now, let f
be such that

K (1) - ol K (7110

Ko (f19)

— Koo (f I ha).-
But L(a) satisfies the following equation:

L(a) = i/ llog (l—l—a}L) —a}i;] dw.

Hence L() is a concave function, with L(0) = 0 and

i/q—fdw
A |+ h

Now, f # g since f has order < r — 1 and g has order 7, and it
is possible to choose h such that L'(0) # 0. Indeed, if this were
not the case, we would get

[ ot eosti)a =

for k = 0,...,r. But the spectral density of an AR(r) pro-
cesses is determined by covariances with lags less than 7. So,
this would lead to g = f and contradict the fact that f € F,_;.

Let h be such that L'(0) # 0. Then there exists a (¢ < 0
in case L/(0) < 0 and a > 0 in case L'(0) > 0) such that
L(a) > 0. O

— Ko (f | ha)]

inf
feEM 1

> L(a) =

L'(0) =

i f(w) cos(kw) dw

J0

APPENDIX

A. Stein Exponents

Proof: (Proof of the triviality of overestimation exponent)
Let g € M,._; denote the spectral density of an AR process of
order » — 1. Let P denote the distribution of the process.

Now let ) denote the probability distribution of an AR
process of order exactly r. The finite-dimensional projections
Q" of ) are absolutely continuous with respect to the finite-di-
mensional projections P™ of P. Let € be positive and smaller
than lim,, ],(Q).. Let AS, denote the event

d n
a = {ysvert Lol < Ko@) P+ ).

By the Shannon-Breiman—McMillan theorem (Theorem 1), for
n large enough

Q{AS} >1—e.
o (P) =Ep [#])]

dpPm
<o |7+
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>Eq |:1Ae ZSZ ¢T:|
> exp (—n(Keo (Q | P) +€)) (Eq [¢7] —€)
2 exp (=n(Keo (Q [ P) +€)) (6,(Q) =€) 9)

Taking the limit of logarithms with respect to n, as

lim, B5(Q) > 0

117?1%10ga;(1°) > Ko (Q|P)=c.  (10)
Let o2 denote the variance of innovations associated to ¢
(0% = 1/(27) [y gdw), and b € O~ the associated predic-
tion filter. Let P denote the probability distribution associated
with g.
Now, let (&™) en denote a sequence of elements of ©” such
that for all n, al* # 0

r—1

S(ar -

i=1

b))\, 0 and a” \, 0.

Let P, denote the probability distribution of the AR
process of order exactly r parameterized by (o,a™). Then
lim, Ko (P, | P) = 0. O

Proof: (Proof of Stein underestimation exponent) Let P
denote the probability distribution of an AR process of order
exactly r.

Now let ) denote the probability distribution of an AR
process of order » — 1. The finite-dimensional projections Q"
of () are absolutely continuous with respect to the finite-dimen-
sional projections P™ of P. Let € be positive and smaller than
lim, 1 — o/ (Q). Let AS, denote the event

1 aQm
— : noo— < .
a={wver, Lo S0 < K@ P+

By the Shannon—Breiman—McMillan theorem (Theorem 1), for
n large enough

Q{A6}>1—e
B1(P) =Ep[(1- &)
> Ep [Lac (1 - ¢))]
—Eo [La; g (1= 60)
> exp (~n(Keo (@ | P) +0) (Eq [t~ ]~ 0
> exp (~n(Kae (Q | P)+) (1=, (@) =) . (11

Taking the limit of logarithms with respect to n, as
lim, o] (Q) < 1

lim = log 4 (P) > (12)
n n

Optimizing with respect to ) leads to the theorem. O

Proof: (Scale invariance of error exponents) Leta € ©" \
©7~! denote a prediction filter of order exactly . Forall ¢ > 0,
let P, denote the probability distribution of an AR process of
order r parameterized by (o, a).

485

Note that the R™-valued random variable Y is distributed ac-
cording to P, if and only if 1/ is distributed according to Py
and that f € M., if and only if f/0? € M,..

The probability that the quasi-ML order testing procedure un-
derestimates the order on a random sample Y of length 7 is

P, {empen(nr) ipf YTT Y
{emmen g v
< —pen(n,’f‘—l) f YTT Y
S € fe.l/\r/l!r 1 (f)
1
= —pen(n,’!‘) T -
Pl{e fg}«ﬁ crY (f)UY
1
< e~pen(nr=1) jpf —YTT Y= Y}
fEMP1 O g
=P {e_pen("’r) inf Y1712 / 7)Y
FEM, o?
e V“Y}
feEM_1 o?
e g v
< p—Ppen(n,r—1) f YTT Y.
S € fei\l/lh 1 (f)

This is enough to conclude that

») = limsup — logﬂML "(Py).

n—oo

lim sup — log pMLr(p

n— o0

The same line of reasoning works for the quasi-Whittle
testing procedure and for the ML testing procedure. O

B. Inverses of Toeplitz Matrices Associated With AR Processes

The next proposition provides a quantitative assessment of
the Whittle approximation when the symbol is the spectral den-
sity of an AR process.

Proposition4: Let f denote the spectral density of an AR(r)
process with unit innovation variance (f € M,). Leta € ©7
denote the associated prediction filter

1
1+ Y00 aiz]

and let ap = 1. For n > 2r, the inverse of the Toeplitz matrix
T,.(f) is given by

T ()i + K]
0, if |k| > r
Z’ ajaj+|k|, if k| <randiAi+k>r
- andn—r>1Vi+k
SN gjaj gy, if |kl < randiAi+k <
iflk|]<randiVi+k>n—r.
(13)

f(z) =

Zn (k+i\/i)

j=0 AjAj4 |kl

The Toeplitz matrix associated with 1/ f is given by

TMUﬁHJ+M={§LWW%““ <7 1)

otherwise.
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Proof: Assume (Y;), ., is an AR(7) process with spectral
density f. The log likelihood of a vector y € R™ can be written
in two different ways

1 1

1 .
——log—m8m —— — — |T—1
38 Gryrdey) 2¢ e U
and
1 1 1,
__1 '—__I.Tfl .
2 8 (Zﬂ)"det(Tn(f)) 2y1.r r (f)?/l.r
2
1 — r
_ 5 Z (yt + Z ai?/t—i) .
t=r+1 i=1
Note that 7,7 1( f) is symmetric with respect to its two diagonals.

Identifying coefficients of ¥,y in the two preceding expressions
leads to (13).

Equation (14) follows immediately from the definition of T,
and 1/f. d

Proposition 5: Let f denote the spectral density of AR(r)
process with unit innovation variance, let a denote the associ-
ated prediction filter, let ag = 1, then

a) T, (1/f) — T;7'(f) is nonnegative of rank at most 2.
b)
v [T (D) =T D]y
< 7"”0'”2 (Zyt + Z yt) 15)
t=n—r+1

Proof: The following equation follows from Proposition 4.
1 -
y' [Tn (—> - 15 1(f)} y
f
2 2
=2 | o anim |+ | D aiwia-
i=1 | \i=s i=j

Then Proposition 5 follows from Cauchy—Schwarz inequality.
O

(16)

C. Proof of the Sieve Approximation Lemma 8
Proof: (Sieve approximation) As both
1 1
1
fi and T, (— - —>
(%)) It

are band-limited matrices, let us first get a general upper bound
on

(T () =T,

y' Ay

where A is an n X n symmetric matrix such A[i;¢ + k] = 0
whenever |k| > 7. Agreeing on the fact that A[i; j] = 0 when-
ever either ¢ or j does not belong to {1,...,n}, we get

y Ay

= Z > viyigrAlizi+ k]

i=1 k=—r

= Z <UL > virAlisi + k‘])

=1 k=—r

1/2

n /2 [ . . 2
< <Z y?) Z ( > virrAlisi + k])
n r r 1/2
<yl (Z ( Z A[isi+ k]) ( Z y12+k>>
. 12 , . 1/2
<llyll max ( Z A%l + k]) (Z ( Z y12+k>>

k=—r k=—r
i=1 \k=-—r

. 1/2
<yl max ZAQ['L‘;Hk]) Vor+1 (Zy)

1/2
<Z A2i; z+k]) V2r + 1|yl|2.

1/2

max
ze{l n}

Now from Proposition 4, it follows that if @ and b denote the
prediction filters associated with f and f; from F,.

(T O L+ K] = TN ()l 1+ K)?
k| 2
< Z araryr — bibiyr
r—|k| 2

<2 Z ar(aiyr — bir)
1=0

r—|k|

+ Z biyr(ar —br)
=0
<2 <Z(az - bz)g) (llal® v [18]1%)

1=0
S 227‘+1a2 .

Plugging this bound in the preceding inequality, we get

sup inf

fEF, i€N(a) N "

Y T - T ) Y

1
< Za(2r+ 127 Y
n
In a similar way, we also get

YTn<l—l>Y
g I fi

Hence, it remains to check that for any positive M, there exists
an integer ¢ such that

1 — 1
li —1 PL=NYVE> V< M.
1msup — log {n; i _t}_

1
sup _inf < =a@r4+1)27 Y.
n

feF, iEN(a) TL

n—oo

From Theorem 2 in [16], it follows that
LDP with rate function

J(y) =

LN y2 o
=Y 11 Yy satisfies a

sup  {Ay— LV}
AE(—00,1/2g]l ]

where

LA\ = — %/Tlogdet (1-2\g(w)) dw
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Now in order to terminate the proof of Lemma 8, it is enough to
choose « in such a way that

—(7‘-‘,—1
J (EZ—)) > M. 0

a(2r+1)

D. Nontriviality of F(g) for AR Processes of Order 2

Proof: (Proposition 3) Let g denote the spectral density of
an AR process of order 2 with prediction filter (a1, az) then

f(9) € F & (1+a2)* > al(1+a3).

Let g € F> be defined by the prediction filter @ = (ay, as).
Let us agree on the following notations:

b():\/l-‘ra%

ay
by =1/1+ a3
! +a21+a2

Py(2) =1+ a1z + as2>.

The I-projection f(g) of g on M, is the spectral density
]./|b0 + b1Z|2.

If |z] < 1, then P,(z) # 0. Hence, P,(z) is nonnegative on
[—1,1]. Moreover, P,(1) > 0 and P,(—1) > 0. This implies

—(1+a2)<a1<1+a2

which entails |b1| < bo.
The matrix T,,(1/f(g9)) + T, *(g) — T (1/g) coincides with

d1 (& 0 0
e do ¢ 0
0 ¢ d ¢
0 ¢
M, = 0
d ¢ 0
c dy e
0 0 (& dl
where
d = by + b

dy = b2 + b2 — a3
di = b3 +b? —a? — a3
C:bgbl
€:b0b1—01a2.

M, is definite positive if all determinants of its “main minors”
are positive. Let F; denote the determinant of the submatrix
formed by the last £ rows and columns of M,,.
1) Ifk <n—2and k > 3. Then E}, = dEj_1 — *Ej_,.
The polynomial z? — dz + ¢? has roots w. This
entails

Ej, = abg* + gb3*
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with

ab% + ﬁb% = dl

Oéba1 + ﬂbi1 = d1d2 - 62.
Note that

1+ as)? — 2aza?

_(
i = (1+a2)2

and that the condition d; > 0 may not be satisfied, for
example, if as = r2, a; = —2r, and r ~ 1 — ¢. Note that
e = a1(1 — 0,2)/(1 + 0,2) anddy, =1+ b%

In order to have E;, > O for all k, it is necessary that
« > 0, hence, dydy — € — d1b? > Oand dy — b3 = 1,
that is, d; — 2 > 0.

This finally entails the necessary condition

(1+a2)? > af(1+ ad).
2) The case k = n — 1 boils down to the following relation:

En1=doEy_o — CzEn_g
= (dgb% — cz)abg(n73) + (de% _ C?)ﬂb?(n73)
= abg(nf?)) + (1 _ b%(bg _ b%)ﬂb%(nf?)))
>0.

3) Finally, the case k = n is dealt with by

E,=d\E,_1 — €*E, _s
= (d1dy — eZ)En_z — d1PE,_s
= [(dida — €*)b3 — dyc?] aby ™™
+ [(didy — €2)b3 — dyc?] b7 ™)
>0
for sufficiently large n

as soon as (dydy — e?)bZ — dyc® > 0.
But

(dydy — )b — dyc?
=bg [didy — €® — dib7]
=bg [di(da — b7) — €]
=b3(d? —e*) since dy = 1+ b3.

Hence, f(g) € F(g) ifand only if (1+a2)? > a?(1+a3).
O
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